
www.Parker.com/HydraulicValve

Electrohydraulic Motion Controls

Proportional Directional \& Pressure Control Valves Servovalves, Electronics, Accessories

Catalog MSG14-2550/US

WARNING - USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

- This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.
- The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.
- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

OFFER OF SALE
The items described in this document are hereby offered for sale by Parker-Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated in the detailed "Offer of Sale" elsewhere in this document or available at www.parker.com/hydraulicvalve.

SAFETY GUIDE

For safety information, see Safety Guide SG HY14-1000 at www.parker.com/safety or call 1-800-CParker.
© Copyright 2019 Parker Hannifin Corporation, All Rights Reserved
01w_Cat 2550 OFC-IFC.indd, ddp, 04/19

Proportional Directional Control Valves

Proportional Pressure Control Valves

Servovalves

c

Electronics

Accessories

Wherever in the world machinery is designed, manufactured or used, Parker is there to meet your hydraulic application requirements - with a broad selection of hydraulic components, worldwide availability and technical support, and above all - Parker Premier Customer Service.

Arranged by product group, this catalog contains specifications, technical data, reference materials, dimensions, and ordering information on the complete line.
When you are ready to order, call your local Parker Hydraulic distributor for fast delivery and service. Consult your Parker Hydraulic Sales Office for the location of the distributor serving your area (see listing at the back of this catalog).

Series Page
Proportional Directional Control Valves
D* Mounting Interface A136
D* Wiring A135
D*1FB (D31FB, D41FB, D91FB, D111FB) A47
D*1FB*EE (D31FB*EE, D41FB*EE, D91FB*EE, D111FB*EE) A64
D*1FB OBE A47
D*9FF (D39FF, D49FF, D99FF, D119FF) A70
D*FP*D A95
D*1FC (D31FC, D41FC, D91FC, D111FC). A76
D*1FP (D31FP, D41FP, D91FP, D111FP) A125
D1FB A3
D1FB*EE A13
D1FC A29
D1FP A89
D1FP*ED A106
D3FB A19
D3FB OBE A19
D3FC A38
D3FP A113
D30FP A119
Proportional Pressure Control Valves
D1FV B58
D1FV OBE B58
DUR*L06 B81
F5C06, F5C08, F5C10 B86
LCM2, LCM3 B97
PRPM2, PRPM3 B76
R4R03, R4R06, R4R10 In-line B71
R4R03, R4R06, R4R10 Subplate B66
R4V03, R4V06, R4V10 OBE Subplate B21
R4V03, R4V06, R4V10 Subplate B12
R4V03*P2, R4V06*P2, R4V10*P2 In-line B32
R5P06, R5P08, R5P10 B90
R5V06, R5V08, R5V10, R5V12 B37
R6V03, R6V06, R6V10 Subplate B12
R6V03, R6V06, R6V10 OBE Subplate B21
RE06M*T B2
RE06M*W B2
RPDM2 B43
VBY*K06, VBY*K10 B44
VMY*K06, VMY*K10 B51
Series Page
Servovalves
BD15, BD30 C2
DY01. C23
DY05 C27
DY1S C16
DY3H, DY6H. C19
DY10. C31
DY15 C35
DY25 C39
DY45 C43
PH76 C12
SE05, SE10, SE15. C47
SE2N C54
SE20 C58
SE31 C63
SE60 C68
Electronics
BD90 D19
BD101 D21
C3F D31
ED00104 D11
ET00104, ET99104 D17
EW*104 (EW10104, EW16104, EW25104, EW26104, EW32104) D9
EX00-S05 D52
K Card Holder D52
KH32F D52
PCD00A-400 D13
PID00A-40* D23
PSD24 D50
PWDOOA-400 D2
PWDXXA-40* D5
PZD00A-40* D27
Accessories
Bolt Kits E4
Cable Assemblies E2
Connectors E3
Subplates E4
Wire Color Assignments E4
Series EX-M05 E5
Terms of Sale and Warranty Limitations E7
Safety Guide. E8

Contents

Series	Description	$\begin{gathered} \text { Dir } \\ \text { Ope } \end{gathered}$	ect ated		$\begin{array}{r} \text { Pi } \\ \text { Oper } \end{array}$	lot rate		Spool Feedback	Integrated Electronics	Page
	$\begin{aligned} & {[\text { size: NG] }} \\ & \text { [size: ISO/CETOP] } \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	$\begin{gathered} 16 \\ 7 \end{gathered}$	$\begin{gathered} 25 \\ 8 \end{gathered}$	$\begin{aligned} & 32 \\ & 10 \end{aligned}$			
D1FB	Std. Performance	-								A3
D1FB OBE	Std. Performance	-							-	A3
D1FB*EE	Std. Performance	-								A13
D1FC	High Performance		-							A29
D3FB	Std. Performance		-							A19
D3FB OBE	Std. Performance		-						-	A19
D3FC	High Performance		-							A38
D*1FB	Std. Performance			-	-	-	-			A47
D*1FB OBE	Std. Performance			-	-	-	-		-	A47
D*1FB*EE	Std. Performance			-	-	-	-			A64
D*9FF	Std. Performance			-	-	-	-			A70
D*1FC	Medium Performance			-	-	-	-			A76
D1FP	Servo Performance	-						-	-	A89
D*FP*D	Servo Performance	-	-							A95
D1FP*ED	Servo Performance	-								A106
D3FP	Servo Performance		-					-	-	A113
D30FP	Servo Performance		-					-	-	A119
D*1FP	Servo Performance			-	-	-	-	-	-	A125
Wiring Guidelines for RFI / EMC Immunity										A135
Mounting Interface Dimensions										A136

Catalog MSG14-2550/US
Notes

General Description

Series D1FB (NG6) proportional directional valves are available with and without onboard electronics (OBE).
D1FB OBE:
The digital onboard electronics is situated in a robust metal housing, which allows the usage under rough environmental conditions.

The nominal values are factory set. The cable connection to a serial RS-232 interface is available as an accessory.

D1FB for external electronics:
The parameters can be saved, changed and duplicated in combination with the digital power amplifier PWD00A-400.

The valve parameters can be edited with the common ProPxD software for both versions.

Series D1FB valves can be ordered with spool/sleeve design (D1FB*0) for maximum precision, as well as spool/body design (D1FB*3) for high nominal flow see functional limit curves for maximum flow capability.

Features

- Spool/sleeve and spool/body
- 3 command options for D1FB OBE: $+/-10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA},+/-20 \mathrm{~mA}$
- High repeatability from valve to valve

D1FB*0 OBE

- Low hysteresis
- Manual override
- Digital onboard electronics

D1FB

D1FB

D1FB OBE

D1FB OBE

D1FB*3 OBE

Spool/Body Design

1. WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3 -Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
A01_Cat2500.indd, ddp, 04/19

${ }^{1)}$ Single solenoid always $0 \ldots+10 \mathrm{~V}$ respectively $4 \ldots 20 \mathrm{~mA}$
${ }^{2)}$ Factory set $\pm 10 \mathrm{~V}$ on delivery

Bolt Kit:

BK209	(4) $10-24 \times 1.25$ SHCS
BK375	(4) M5x30

BK375
(4) M5x30

Weight:
D1FB $\quad 2.5 \mathrm{~kg}(5.5 \mathrm{lbs}$.

Please order plugs separately. See Accessories.

Parametrizing cable OBE => RS-232
Item no. 40982923

Proportional Directional Control Valves
Specifications
Series D1FB (Offboard Electronics)

General			
Design	Direct operated proportional DC valve		
Actuation	Proportional solenoid		
Size	NG6 / CETOP 3 / NFPA D03		
Mounting Interface	DIN 24340 / ISO 4401 / CETOP RP121 / NFPA		
Mounting Position	Unrestricted		
Ambient Temperature [$\left.{ }^{\circ} \mathrm{C}\right]$	$-20 \ldots+60 ;\left(-4^{\circ} \mathrm{F} . . .+140^{\circ} \mathrm{F}\right)$		
$\mathrm{MTTF}_{\mathrm{D}}$ Value (OBE) [years]	150 (75)		
Vibration Resistance [g]	10 Sinus 5 ... 2000 Hz acc. IEC 68-2-6 30 Random noise $20 . . .2000 \mathrm{~Hz}$ acc. IEC 68-2-36 15 Shock acc. IEC 68-2-27		
Hydraulic			
Maximum Operating Pressure	Ports P, A, B 350 Bar (5075 PSI); Port T 210 Bar (3045 PSI)		
Maximum Pressure Drop PABT / PBAT	350 Bar (5075 PSI)		
Fluid	Hydraulic oil as per DIN 51524...51535, other on request		
Fluid Temperature $\quad\left[{ }^{\circ} \mathrm{C}\right]$	$-20 \ldots+60 ;\left(-4^{\circ} \mathrm{F} . . .+140^{\circ} \mathrm{F}\right)$		
Viscosity Permitted Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	$\begin{array}{\|l\|} 20 \ldots . . .380 \text { (93... } 1761 \text { SSU) } \\ 30 \ldots 80 \text { (139... } 371 \text { SSU) } \end{array}$		
Filtration	ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)		
Nominal Flow at $\Delta \mathrm{p}=5 \mathrm{Bar}$ (72.5 PSI) per Control Edge *	D1FB*0 (Spool/sleeve)	D1FB*3 (Spool/body)	
	$\begin{gathered} 6 \text { LPM (1.6 GPM) / } 12 \text { LPM (3.2 GPM) / } \\ 20 \text { LPM (5.3 GPM) } \end{gathered}$	10 LPM (2.6 GPM) / 20 LPM (5.3 GPM) / 30 LPM (7.9 GPM)	
Leakage at 100 Bar (1450 PSI) [$\mathrm{ml} / \mathrm{min}]$ Per Land	<50 (overlap spool)	<60	
Overlap [\%]	25, electrically normalized at 10 (see flow characteristics for OBE valves)		
Static / Dynamic			
Step Response at 100\% Step [ms]	30	30	
Hysteresis [\%]	<4	<6	
Temperature Drift Solenoid Current$\quad[\% / K]$	<0.02		
Electrical			
Duty Ratio [\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible		
Protection Class	Standard (as per EN175301-803) IP65 in accordance with EN60529 (plugged and mounted) DT04-2P "Deutsch" IP69K (plugged and mounted)		
Solenoid	Code "M"	Code "K"	Code "J" (Spool/sleeve)
Supply Voltage [V]	9	12	24
Current Consumption [A]	2.7	2.2	0.8 (1.1)
Resistance [Ohm]	2.7	4.4	18.6
Coil Insulation Class	F ($155^{\circ} \mathrm{C}$); ($331{ }^{\circ} \mathrm{F}$)		
Solenoid Connection	Connector as per EN 175301-803 (code W), DT04-2P "Deutsch" connector (code J). Solenoid identification as per ISO 9461.		
Wiring Minimum [mm^{2}]	3x1.5 (AWG 16) overall braid shield (Code W), "Deutsch" connector DP4 2-Pin (Code J)		
Wiring Length Maximum [m]	50 (164 ft.)		

* Flow rate for different Δp per control edge: $Q_{x}=Q_{\text {Nom. }} \cdot \sqrt{\frac{\Delta p_{x}}{\Delta p_{\text {Nom. }}}}$

Electrical		
Duty Ratio	[\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible
Protection Class		IP65 in accordance with EN 60529 (plugged and mounted)
Supply Voltage/ripple DC	[V]	18...30, ripple < 5\% eff., surge free
Current Consumption Maximum	[A]	2.0
Pre-fusing Medium Lag	[A]	2.5
Input Signal Codes F0 \& W5 Voltage Codes S0 \& W5 Current Code Go	$\begin{array}{r} {[\mathrm{V}]} \\ {[\mathrm{mA}]} \\ {[\mathrm{mA}]} \end{array}$	$+10 \ldots 0 \ldots-10$, ripple $<0.01 \%$ eff., surge free, $R i=100 k O h m, 0 \ldots+10 \mathrm{~V}=>P$-> A $4 \ldots 12 \ldots 20$, ripple $<0.01 \%$ eff., surge free, $R i=2000 \mathrm{hm}, 12 \ldots 20 \mathrm{~mA}=>P$-> A $<3.6 \mathrm{~mA}=$ enable off, $>3.8 \mathrm{~mA}=$ enable on (acc. to NAMUR NE43) $+20 \ldots 0 \ldots-20$, ripple $<0.01 \%$ eff., surge free, $R i=2000 \mathrm{hm}, 0 \ldots+20 \mathrm{~mA}=>$ P -> A
Differential Input Maximum Codes FO, GO \& SO Code W5 Voltage References:	[V] [V]	30 for terminal D and E against PE (terminal G) 11 for terminal D and E against OV (terminal B) 30 for terminal 4 and 5 against PE (terminal PE) 11 for terminal 4 and 5 against $0 V$ (terminal 2) Not a powered output, +10 VDC at Pin C, -10 VDC at Pin F Only for 10K Ohm pots
Channel Recall Signal	[V]	0...2.5: off / 5...30: on / Ri = 100 kOhm
Adjustment Ranges: Min Max Ramp	[\%] [\%] [s]	$\begin{array}{\|l} 0 \ldots . .50 \\ 50 \ldots . .100 \\ 0 \ldots 32.5 \end{array}$
Interface		RS-232, parametrizing connection 5 pole
EMC		EN 61000-6-2, EN 61000-6-4
Central Connection Codes FO, GO \& SO Code W5		6 + PE acc. to EN 175201-804 11 + PE acc. to EN 175201-804
Wiring Minimum Codes FO, GO \& SO Code W5	$\begin{gathered} {\left[\mathrm{mm}^{2}\right]} \\ {\left[\mathrm{mm}^{2}\right]} \end{gathered}$	7×1.0 (AWG16) overall braid shield 11×1.0 (AWG20) overall braid shield
Wiring Length Maximum	[m]	50 (164 ft.)

Proportional Directional Control Valves Series D1FB

D1FB Flow

D1FB OBE Flow

(Electrically set to opening point 10\%)

Functional Limits

At $25 \%, 50 \%, 75 \%$ and 100% command signal (symmetric flow). At asymmetric flow a reduced flow limit has to be considered - typically approx. 10\% lower.

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Code Fo

6 + PE acc. to EN 175201-804

Code W5

11 + PE acc. to EN 175201-804

ProPxD Interface Program

The ProPxD software allows quick and easy setting of the digital valve electronics. Individual parameters as well as complete settings can be viewed, changed and saved via the comfortable user interface. Parameter sets saved in the non-volatile memory can be loaded to other valves of the same type or printed out for documentation purposes.

Features

- Simple editing of all parameters.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR} 95$ upwards.
- Communication between PC and electronics via serial interface RS-232.
The valve electronics cannot be connected to a PC with a standard USB cable - this can result in damages of PC and/or valve electronics.
Simple to use interface program. Download free of charge www.parker.com/propxd

The parametrizing cable may be ordered under item no. 40982923.

Inch equivalents for millimeter dimensions are shown in (**)
D1FB*C

D1FB*E

D1FB*K

D1FB*C*0 with DT04-2P "Deutsch" Connector
(Only C style shown)

D1FB*C*3

[^0]Inch equivalents for millimeter dimensions are shown in（＊＊）

D1FB＊C OBE

D1FB＊E OBE

D1FB＊K OBE

Surface Finish	包 Kit	的㱼	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}-\square 0.01 / 100}{1 / 7 / 1 / / / 1 / 1 /}$	$\begin{aligned} & \text { BK375 } \\ & \text { BK209 } \end{aligned}$	$\begin{gathered} 4 \times \text { M5x30 } \\ \text { DIN } 91212.9 \\ 4 \times 10-24 \times 1.25 \end{gathered}$	$\begin{gathered} \text { 7.6 Nm (5.6 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D1FB Fluorocarbon：SK－D1FBV

A01＿Cat2500．indd，ddp，04／19

General Description

Series D1FB*EE series with explosion proof solenoids is based on the standard D1FB series. The specific solenoid design allows the usage in hazardous environments. The explosion proof class is

$$
\begin{aligned}
& C \in(\varepsilon x) \text { II } 2 \text { G } \\
& \text { Ex e mb II T4 Gb }
\end{aligned}
$$

for use in zone 1 and 2 (conform to ATEX).

Features

- Spool/sleeve and spool/body
- High repeatability from valve to valve
- Low hysteresis
- Manual override
- Optional: coil to permit ambient temperature up to $+60^{\circ} \mathrm{C}$ $\left(+140^{\circ} \mathrm{F}\right)$, modification XG371

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
A01_Cat2500.indd, ddp, 04/19

Bolt Kit:

BK375 (4) M5x30

Weight:

2 Solenoids	$3.5 \mathrm{~kg}(7.7 \mathrm{lbs})$.
1 Solenoid	$2.5 \mathrm{~kg}(5.5 \mathrm{lbs})$.

* Flow rate for different $\Delta \mathrm{p}$ per control edge: $\mathrm{Q}_{\mathrm{x}}=\mathrm{Q}_{\text {Nom. }} \cdot \sqrt{\frac{\Delta \mathrm{p}_{\mathrm{x}}}{\Delta \mathrm{p}_{\text {Nom. }}}}$

Proportional Directional Control Valves Series D1FB*EE Explosion Proof

D1FB*0*EE

Functional Limits

At $25 \%, 50 \%, 75 \%$ and 100% command signal (symmetric flow). At asymmetric flow a reduced flow limit has to be considered - typically approx. 10% lower.

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Continued on the next page

Proportional Directional Control Valves Series D1FB*EE Explosion Proof

D1FB*3*EE

D1FB*3*EEXG371

Functional Limits

At $25 \%, 50 \%, 75 \%$ and 100% command signal (symmetric flow). At asymmetric flow a reduced flow limit has to be considered - typically approx. 10\% lower.

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Inch equivalents for millimeter dimensions are shown in (**)

D1FB*C*EE

D1FB*K*EE

D1FB*E*EE

© $-\square$

Surface Finish	\square Kit	目 $\underbrace{\text { \% }}$	卫	Seal \bigcirc Kit
$\frac{\sqrt{R_{\text {max }} 6.3} \sqrt{\square 00.01 / 100}}{1 / 7 / 1 / 1 / 1 / 1 / 7}$	BK375	$\begin{gathered} 4 \times \mathrm{M} 5 \times 30 \\ \text { ISO } 4762-12.9 \end{gathered}$	7.6 Nm (5.6 lb.ft.)	Nitrile: SK-D1FB

Proportional Directional Control Valves Series D3FB

General Description

Series D3FB (NG10) proportional directional valves are available with and without onboard electronics (OBE).
D3FB OBE:
The digital onboard electronics is situated in a robust metal housing, which allows the usage under rough environmental conditions.

The nominal values are factory set. The cable connection to a serial RS-232 interface is available as accessory.

D3FB for external electronics:
The parameters can be saved, changed and duplicated in combination with the digital power amplifier PWD00A-400.

The valve parameters can be edited with the common ProPxD software for both versions.

Series D3FB valves can be ordered with spool/sleeve design (D3FB*0) for maximum precision, as well as spool/body design (D3FB*3) for high nominal flow see functional limit curves for maximum flow capability.

Features

- Spool/sleeve and spool/body
- 3 command options for D3FB OBE: $+/-10 \mathrm{~V}, 4 \ldots .20 \mathrm{~mA},+/-20 \mathrm{~mA}$

D3FB OBE

D3FB

- High repeatability from valve to valve

- Low hysteresis
- Manual override
- Digital onboard electronics

1. WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
A01_Cat2500.indd, ddp, 04/19

Please order plugs separately. See Accessories.

Parametrizing cable OBE => RS-232
Item no. 40982923

Proportional Directional Control Valves
Specifications
Series D3FB (Offboard Electronics)

General		
Design	Direct operated proportional DC valve	
Actuation	Proportional solenoid	
Size	NG10 / CETOP 5 / NFPA D05	
Mounting Interface	DIN 24340 / ISO 4401 / CETOP RP121 / NFPA	
Mounting Position	Unrestricted	
Ambient Temperature [${ }^{\circ} \mathrm{C}$]	-20... +60 ; (-4 $\left.{ }^{\circ} \mathrm{F} . . .+140^{\circ} \mathrm{F}\right)$	
MTTF ${ }_{\text {D }}$ Value (OBE) [years]	150 (75)	
Vibration Resistance [g]	10 Sinus 5 ... 2000 Hz acc. IEC 68-2-6 30 Random noise $20 \ldots 2000 \mathrm{~Hz}$ acc. IEC 68-2-36 15 Shock acc. IEC 68-2-27	
Hydraulic		
Maximum Operating Pressure	Ports P, A, B 350 Bar (5075 PSI); Port T 210 Bar (3045 PSI)	
Maximum Pressure Drop PABT / PBAT	350 Bar (5075 PSI)	
Fluid	Hydraulic oil as per DIN 51524...51535, other on request	
Fluid Temperature [${ }^{\circ} \mathrm{C}$]	-20...+60; (-4 $\left.{ }^{\circ} \mathrm{F} . .+140^{\circ} \mathrm{F}\right)$	
Viscosity Permitted $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	$\begin{aligned} & \text { 20... } 380 \text { (93... } 1761 \text { SSU) } \\ & 30 \ldots 80 \text { (139... } 371 \text { SSU) } \end{aligned}$	
Filtration	ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)	
Nominal Flow at $\Delta \mathrm{p}=5 \mathrm{Bar}$ (72.5 PSI) per Control Edge *	D3FB*0 (Spool/sleeve)	D3FB*3 (Spool/body)
	40 LPM (10.6 GPM) / 60 LPM (15.9 GPM)	$\begin{gathered} 40 \text { LPM (10.6 GPM) } 60 \text { LPM (15.9 GPM) / } \\ 80 \text { LPM (21.2 GPM) } \end{gathered}$
Leakage at $100 \mathrm{Bar}(1450 \mathrm{PSI}) \quad[\mathrm{ml} / \mathrm{min}]$	<100	<100
Overlap [\%]	25, electrically normalized at 10 (see flow characteristics)	
Static / Dynamic		
Step Response at 100\% Step [ms]	40	
Hysteresis [\%]	<4	<5
Temperature Drift Solenoid Current$\quad[\% / K]$	<0.02	
Electrical		
Duty Ratio [\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible	
Protection Class	IP65 in accordance with EN60529 (plugged and mounted)	
Solenoid	Code "K"	Code "J"
Supply Voltage [V]	12	24
Current Consumption [A]	2.95	1.5
Resistance [Ohm]	3.84	16.5
Solenoid Connection	Connector as per EN 175301-803	
Wiring Minimum [mm²]	3×1.5 recommended	
Wiring Length Maximum [m]	50 (164 ft.)	

* Flow rate for different Δp per control edge: $Q_{x}=Q_{\text {Nom. }} \cdot \sqrt{\frac{\Delta p_{x}}{\Delta p_{\text {Nom. }}}}$

Electrical		
Duty Ratio	[\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible
Protection Class		IP65 in accordance with EN 60529 (plugged and mounted)
Supply Voltage/Ripple DC	[V]	18...30, ripple < 5\% eff., surge free
Current Consumption Maximum	[A]	3.5
Pre-fusing Medium Lag	[A]	4.0
Input Signal Codes F0 \& W5 Voltage Codes S0 \& W5 Current Code Go	$\begin{gathered} {[\mathrm{V}]} \\ {[\mathrm{mA]}} \\ {[\mathrm{mA}]} \end{gathered}$	$+10 \ldots 0 . . .-10$, ripple $<0.01 \%$ eff., surge free, $R i=100 \mathrm{kOhm}, 0 \ldots+10 \mathrm{~V}=>P$-> A $4 . .12 . .20$, ripple $<0.01 \%$ eff., surge free, $R i=2000 \mathrm{hm}, 12 . .20 \mathrm{~mA}=>P$-> A $<3.6 \mathrm{~mA}=$ enable off, $>3.8 \mathrm{~mA}=$ enable on (acc. to NAMUR NE43) $+20 \ldots 0 \ldots-20$, ripple $<0.01 \%$ eff., surge free, $\mathrm{Ri}=2000 \mathrm{hm}, 0 \ldots+20 \mathrm{~mA}=>$ P -> A
Differential Input Maximum Codes F0, G0 \& S0 Code W5 Voltage References:	$[\mathrm{V}]$ $[\mathrm{V}]$	30 for terminal D and E against PE (terminal G) 11 for terminal D and E against OV (terminal B) 30 for terminal 4 and 5 against PE (terminal PE) 11 for terminal 4 and 5 against 0 V (terminal 2) Not a powered output Only for 10K Ohm pots
Channel Recall Signal	[v]	0...2.5: off / 5...30: on / Ri $=100 \mathrm{kOhm}$
Adjustment Ranges: Minimum Maximum Ramp	$\begin{gathered} {[\%]} \\ {[\%]} \\ {[\mathrm{s}]} \end{gathered}$	$\left\lvert\, \begin{aligned} & 0 . . .50 \\ & 50 . . .100 \\ & 0 . . .32 .5 \end{aligned}\right.$
Interface		RS-232, parametrizing connection 5 pole
EMC		EN 61000-6-2, EN 61000-6-4
Central Connection Codes F0, G0 \& SO Code W5		6 + PE acc. to EN 175201-804 $11+$ PE acc. to EN 175201-804
$\begin{aligned} & \hline \text { Wiring Minimum } \\ & \text { Codes F0, G0 \& S0 } \\ & \text { Code W5 } \end{aligned}$	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {\left[\mathrm{mm}^{2}\right]} \end{aligned}$	7×1.0 (AWG16) overall braid shield 11×1.0 (AWG20) overall braid shield
Wiring Length Maximum	[m]	50 (164 ft.)

(Electrically set to opening point 10\%)

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Functional Limits
100% command signal (symmetric flow). At asymmetric flow a reduced flow limit has to be considered - typically approx. 10\% lower.

D3FB*3

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Code FO

6 + PE acc. to EN 175201-804

Proportional Directional Control Valves Series D3FB

Code Go, So
6 + PE acc. to EN 175201-804

Code W5

11 + PE acc. to EN 175201-804

ProPxD Interface Program

The ProPxD software allows quick and easy setting of the digital valve electronics. Individual parameters as well as complete settings can be viewed, changed and saved via the comfortable user interface. Parameter sets saved in the non-volatile memory can be loaded to other valves of the same type or printed out for documentation purposes.

Features

- Simple editing of all parameters.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR} 95$ upwards.
- Communication between PC and electronics via serial interface RS-232.
The valve electronics cannot be connected to a PC with a standard USB cable - this can result in damages of PC and/or valve electronics.
Simple to use interface program. Download free of charge www.parker.com/propxd

The parametrizing cable may be ordered under item no. 40982923.

Inch equivalents for millimeter dimensions are shown in（＊＊）

D3FB＊C

D3FB＊K
\star Order plugs separately．

© \rightarrow

Surface Finish	包 Kit	目卫 ${ }^{\text {c }}$	ST	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3} \sqrt{\square 0.01 / 100}}{1 / / / 1 / 1 / 1 / 1 / 7 /}$	$\begin{aligned} & \text { BK385 } \\ & \text { BK98 } \end{aligned}$	$\begin{gathered} 4 \times \mathrm{M} 6 \times 40 \\ \text { DIN } 91212.9 \\ 4 \times 1 / 4-20 \times 1.62 \end{gathered}$	$\begin{gathered} \text { 13.2 } \mathrm{Nm}(9.7 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D3FB Fluorocarbon：SK－D3FBV

Inch equivalents for millimeter dimensions are shown in (**)

D3FB*C OBE

D3FB*E OBE

© $-\square$

Surface Finish	0 Oit	畀 约	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3}-\square 0_{0.01 / 100}}{1 / / 7 / 1 / 7 / 1 /}$	$\begin{gathered} \text { BK385 } \\ \text { BK98 } \end{gathered}$	$\begin{gathered} 4 \times \text { M6x40 } \\ \text { DIN } 91212.9 \\ 4 \times 1 / 4-20 \times 1.62 \end{gathered}$	$\begin{gathered} \text { 13.2 } \mathrm{Nm}(9.7 \mathrm{lb} . \mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile: SK-D3FB Fluorocarbon: SK-D3FBV

A01_Cat2500.indd, ddp, 04/19

General Description

Series D1FC direct operated proportional directional valves with digital onboard electronics and position feedback provide high dynamics combined with high flow.

The D1FC is available with overlap spools for open loop applications as well as low lap spools for closed loop control.

The LVDT is completely integrated into the housing and it does not require an exposed cable connection. Thus an unintended disconnection is impossible.

The digital onboard electronics are situated in a robust metal housing which allows usage under rough environmental conditions. The nominal values are factory set. The parametrizing cable to connect to a serial RS-232 interface is available as an accessory.

Features

- Progressive flow characteristics for sensitive adjustment
- Low hysteresis
- High dynamics
- High flow capacity
- Compact dimensions
- Solenoid disable optional

©
WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
A01_Cat2500.indd, ddp, 04/19

Parametrizing cable OBE => RS-232
Item no. 40982923

Bolt Kit:

> BK375 (4) M5x30

Weight:
D1FC $\quad 3.4 \mathrm{~kg}(7.5 \mathrm{lbs}$.

Proportional Directional Control Valves
 Series D1FC

Specifications

General			
Design			Direct operated proportional DC valve with position feedback
Actuation			Proportional solenoid
Size			NG06 / CETOP 03 / NFPA D03
Mounting Interface			DIN 24340 / ISO 4401 / CETOP RP121 / NFPA
Mounting Position			Unrestricted
Ambient Temperature [${ }^{\circ} \mathrm{C}$]			-20...+60; (-4 $\left.{ }^{\circ} \mathrm{F} . . .+140^{\circ} \mathrm{F}\right)$
MTTF ${ }_{\text {V }}$ Value (OBE) ${ }^{11}$ [years]			150
Weight [kg]			3.4 (7.5 lbs)
Vibration Resistance [g]			10 Sinus 5 ... 2000 Hz acc. IEC 68-2-6 30 Random noise $20 . . .2000 \mathrm{~Hz}$ acc. IEC 68-2-36 15 Shock acc. IEC 68-2-27
Hydraulic			
Maximum Operating Pressure		[Bar]	Ports P, A, B 350 Bar (5075 PSI), Port T max. 35 Bar (508 PSI); 210 Bar (3045 PSI) external drain; Port Y max. 35 Bar (508 PSI)
Max. Pressure Drop PABT / PBAT [Bar]			350 Bar (5075 PSI)
Fluid			Hydraulic oil as per DIN 51524...51535, other on request
Fluid Temperature [${ }^{\circ} \mathrm{C}$]			$-20 \ldots+60 ;\left(-4{ }^{\circ} \mathrm{F} . . .+140^{\circ} \mathrm{F}\right)$; Nitrile -25...+60 (-13 $\left.{ }^{\circ} \mathrm{F} . .+140^{\circ} \mathrm{F}\right)$
Viscosity Permitted Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$			$\begin{array}{\|l} \text { 20... } 400 \text { (93... } 1854 \text { SSU) } \\ 30 \ldots . . .80 \text { (139... } 371 \text { SSU) } \end{array}$
Filtration			ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)
Nominal Flow at $\Delta \mathrm{p}=5$ Bar (72.5 PSI) per Control Edge ${ }^{2}$ [LPM]			5 LPM (1.3 GPM) / 10 LPM (2.6 GPM) / 20 LPM (5.3 GPM) / 30 LPM (7.9 GPM)
Leakage at 100 Bar (1450 PSI) [\quad ml/min]			<800 (low lap spool); <300 (overlap spool)
Opening Point			Set to 10\% command signal (see flow characteristics)
Static / Dynamic			
Step Response at 100\% Step [ms]			20
Hysteresis [\%]			<0.1
Temperature Drift [\%/K]			<0.01
Electrical			
Duty Ratio [\%]			100
Protection Class			IP65 in accordance with EN60529 (with correctly mounted plug-in connector)
Supply Voltage/Ripple DC [V]			18...30, electric shut-off at <17, ripple $<5 \%$ eff., surge free
Current Consumption Maximum [A]			2.0
Pre-Fusing Medium Lag [A]			2.5
Command Code B Voltage Impedance Current Impedance Code E Current Impedance		$\begin{array}{r} {[\mathrm{V}]} \\ {[\mathrm{kOhm}]} \\ {[\mathrm{mA}]} \\ {[\mathrm{Ohm}]} \\ {[\mathrm{mA}]} \\ {[\mathrm{Ohm}]} \\ \hline \end{array}$	$\begin{aligned} & +10 \ldots 0 \ldots-10 \text {, ripple }<0.01 \% \text { eff., surge free, } 0 \ldots+10 \mathrm{~V} \mathrm{P}-\mathrm{A} \\ & 100 \\ & +4 \ldots . .12 \ldots . .20, \text { ripple }<0.01 \% \text { eff., surge free, } 12 \ldots 20 \mathrm{~mA} \mathrm{P}-\mathrm{A} \\ & <3.6 \mathrm{~mA}=\text { enable off, }>3.8 \mathrm{~mA}=\text { enable on (according to NAMUR NE43) } \\ & <250 \\ & +20 \ldots . \ldots-20, \text { ripple }<0.01 \% \text { eff., surge free, } 0 \ldots+20 \mathrm{~mA} \mathrm{P}-\mathrm{A} \\ & <250 \end{aligned}$

1) If valves with onboard electronics are used in safety-related parts of control systems, in case the safety function is requested, the valve electronics voltage supply is to be switched off by a suitable switching element with sufficient reliability.
2) Flow rate for different Δ p per control edge: $Q_{x}=Q_{\text {Nom. }} \cdot \sqrt{\frac{\Delta p_{x}}{\Delta p_{\text {Nom. }}}}$

Electrical		
Differential Input Max. Code 0/1/3/7 Code 5	[V] [V]	30 for terminal D and E against PE (terminal G) 11 for terminal D and E against $0 V$ (terminal B) 30 for terminal 4 and 5 against PE (terminal PE) 11 for terminal 4 and 5 against 0 V (terminal 2)
Adjustment Ranges Mininimum Maximum Ramp	$\begin{gathered} {[\%]} \\ {[\%]} \\ {[\mathrm{s}]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \ldots .50 \\ & 50 \ldots 100 \\ & 0 \ldots . .32 .5 \end{aligned}$
Parametrizing Interface		RS-232C, parametrizing connection 5 pole
Enabling Signal Code 1/5/7	[V]	5... 30
Diagnostic Signal	[V]	+10...0...-10 / =12.5 error detection, rate max. 5 mA
EMC		61000-6-2, EN 61000-6-4
Electrical Connection Code 0/1/3/7 Code 5		$6+$ PE acc. to EN 175201-804 11 + PE acc. to EN 175201-804
$\begin{array}{ll}\text { Wiring Minimum } & \begin{array}{l}\text { Code 0/1/3/7 } \\ \text { Code } 5\end{array}\end{array}$	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {\left[\mathrm{mm}^{2}\right]} \end{aligned}$	7×1.0 (AWG 16) overall braid shield 8×1.0 (AWG 16) overall braid shield
Wiring Length Maximum	[m]	50 (164 ft.)
Solenoid Disable: Electrical Connection Code 1/3 Wiring Minimum Wiring Length Maximum	$\begin{array}{r} {\left[\mathrm{mm}^{2}\right]} \\ {[\mathrm{m}]} \end{array}$	Female M12x1; 5p acc. to IEC-61076-2-101 0.34 (AWG 22) 50 (164 ft .)

Flow Characteristics

(Set to opening point 10\%) at $\Delta \mathrm{p}=5 \mathrm{Bar}(72.5 \mathrm{PSI}$) per metering edge

Spool Type E01

Spool Type E50

Spool Type B31

Spool Type B60

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Functional Limits

$25 \%, 50 \%$, 75%, and 100% command signal (symmetric flow).
At asymmetric flow a reduced flow limit has to be considered.

Spool type E01C

Spool type E01H

Frequency

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Spool type E01F

Spool type E01K

Step Response

Code 0

6 + PE acc. to EN 175201-804

Code 7

6 + PE acc. to EN 175201-804 + enable

Code 5

11 + PE acc. to EN 175201-804

Proportional Directional Control Valves Series D1FC

ProPxD Interface Program

The ProPxD software allows comfortable parameter setting for the module electronics. Via the clearly arranged entry mask the parameters can be noticed and modified. Storage of complete parameter sets is possible as well as printout or record as a text file for further documentation. Stored parameter sets may be loaded anytime and transmitted to other valves. Inside the electronics a non-volatile memory stores the data with the option for recalling or modification.

The PC software can be downloaded free of charge at www.parker.com/propxd.

Features

- Simple editing of all parameters.
- Depiction and documentatino of parameter sets.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR}$ XP upwards.
- Communication between PC and electronics via serial interface RS-232C.

The parametrizing cable may be ordered under item no. 40982923.

Parker Hannifin ProPxD				\square 回 \times	
File Options Diagnostics Specials Help \$					
basic	all Parm.				
-Type $\begin{gathered}\text { PC settings } \\ \\ \text { D×FC dig. }\end{gathered}$	PC			Modul	valve settings
	No.	Value	Description	Module A	
	P1	0.0	zero adjustment [\%]	\square	- Type \quad no modul
	P3	100.0	MAX A-channel [\%]		
	P4	100.0	MAX B-channel [\%]		-serial number
	P7	0.0	MIN A-channel [\%]		????
-Valve $\begin{aligned} & \\ & \\ & \\ & \\ & \text { default }\end{aligned}$	P8	0.0	MIN B-channel [\%]		-Version ? ? ?
	S5	0	ramp up A-channel [ms]		
	S6	0	ramp down A-channel [ms]		Valve
	S7	0	ramp up B-channel [ms]		
	S8	0	ramp down B-channel [ms]		????
					-
					-
					$\square \rightarrow \square$
					Receive all Valve >> PC
					Send all $\mathrm{PC} \gg$ Valve
					save parameter
					$\underline{\square}$
				*	Default

Inch equivalents for millimeter dimensions are shown in（＊＊）

Surface Finish	甼 Kit	男 级	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}-\sqrt{\square 0.01 / 100}}{1 / 1 / / 1 / 1 / 1 / 1 /}$	BK375	$\begin{gathered} 4 \times \mathrm{M} 5 \times 30 \\ \text { ISO 4762-12.9 } \end{gathered}$	$\begin{gathered} \text { 7.6 Nm (5.6 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D1FC Fluorocarbon：SK－D1FC－V

General Description

Series D3FC (NG10) direct operated proportional directional valves with digital onboard electronics and position feedback provides high dynamics combined with high flow.

The D3FC is available with overlap spools for open loop applications as well as low lap spools for closed loop control.

The LVDT is completely integrated into the housing and it does not require an exposed cable connection. Thus an unintended disconnection is impossible.
The digital onboard electronics is situated in a robust metal housing, which allows usage under rough environmental conditions. The nominal values are factory set. The parametrizing cable to connect to a serial RS-232 interface is available as an accessory.

Features

- Progressive flow characteristics for sensitive adjustment
- Low hysteresis
- High dynamics
- High flow capacity
- Compact dimensions

(ϵ

©

Parametrizing cable OBE => RS-232
Item no. 40982923

Bolt Kit:

> BK385 (4) M6x40

Weight:
D3FC $\quad 7.7 \mathrm{~kg}(17.0 \mathrm{lbs}$.

Catalog MSG14-2550/US
Specifications

Proportional Directional Control Valves
Series D3FC

General			
Design			Direct operated proportional DC valve with position feedback
Actuation			Proportional solenoid
Size			NG10 / CETOP 05 / NFPA D05
Mounting Interface			DIN 24340 / ISO 4401 / CETOP RP121 / NFPA
Mounting Position			Unrestricted
Ambient Temperature [${ }^{\circ} \mathrm{C}$]			$-20 \ldots+60 ;\left(-{ }^{\circ} \mathrm{F} \ldots+140^{\circ} \mathrm{F}\right)$
MTTF $_{\text {D }}$ Value (OBE) ${ }^{1)}$ [year			150
Weight [kg]			7.7 (17.0 lbs)
Vibration Resistance [g]			10 Sinus 5 ... 2000 Hz acc. IEC 68-2-6 30 Random noise 20... 2000 Hz acc. IEC 68-2-36 15 Shock acc. IEC 68-2-27
Hydraulic			
Maximum Operating Pressure		[Bar]	Ports P, A, B 350 Bar (5075 PSI); Port T max. 35 Bar (508 PSI); 210 Bar (3046 PSI) external drain; Port Y max. 35 Bar (508 PSI)
Max.m Pressure Drop PABT / PBAT			350 Bar (5075 PSI)
Fluid			Hydraulic oil as per DIN 51524...51535, other on request
Fluid Temperature			$-20 \ldots+60 ;\left(-{ }^{\circ} \mathrm{F} \ldots+140^{\circ} \mathrm{F}\right)$; Nitrile $-25 \ldots+60\left(-13^{\circ} \mathrm{F} \ldots+140^{\circ} \mathrm{F}\right)$
Viscosity Permitted $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$			$\begin{aligned} & 20 \ldots 400 \text { (93... } 1854 \text { SSU) } \\ & 30 \ldots 80 \text { (139... } 371 \text { SSU) } \end{aligned}$
Filtration			ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)
Nominal Flow at $\Delta \mathrm{p}=5$ Bar (72.5 PSI) per Control Edge ${ }^{2)}$ [LPM]			35 LPM (9.2 GPM) / 55 LPM (14.5 GPM) / 75 LPM (19.8 GPM)
Leakage at 100 Bar (1450 PSI)		[ml/min]	<1000 (low lap spool); <500 (overlap spool)
Opening Point			Set to 10\% command signal (see flow characteristics)
Static / Dynamic			
Step Response at 100\% Step		[ms]	40
Hysteresis		[\%]	<0.1
Temperature Drift		[\%/K]	<0.01
Electrical			
Duty Ratio		[\%]	100
Protection Class			IP65 in accordance with EN60529 (with correctly mounted plug-in connector)
Supply Voltage/Ripple DC		[V]	18...30, electric shut-off at <17, ripple $<5 \%$ eff., surge free
Current Consumption Maximum		[A]	3.5
Pre-Fusing Medium Lag		[A]	4.0
Command Code B Code S Code E	Voltage Impedance Current Impedance Current Impedance	[V] [kOhm] [mA] [Ohm] [mA] [Ohm]	```+10...0...-10, ripple <0.01% eff., surge free, 0...+10 V P-A 100 4...12...20, ripple <0.01% eff., surge free, 12... }20\textrm{mA P}- <3.6 mA = enable off, >3.8 mA = enable on (according to NAMUR NE43) <250 +20..0...-20, ripple <0.01% eff., surge free, 0...+20 mA P-A <250```

Continued on the next page
${ }^{1)}$ If valves with onboard electronics are used in safety-related parts of control systems, in case the safety function is requested, the valve electronics voltage supply is to be switched off by a suitable switching element with sufficient reliability.
${ }^{\text {2) }}$ Flow rate for different Δ p per control edge: $Q_{x}=Q_{\text {Nom. }} \cdot \sqrt{\frac{\Delta p_{x}}{\Delta p_{\text {Nom. }}}}$

Electrical		
Differential Input Max. Code 0/1/3/7 Code 5	[V] [V]	30 for terminal D and E against PE (terminal G) 11 for terminal D and E against O (terminal B) 30 for terminal 4 and 5 against PE (terminal PE) 11 for terminal 4 and 5 against 0 V (terminal 2)
Adjustment RangesMininimum Maximum Ramp	$\begin{gathered} {[\%]} \\ {[\%]} \\ {[\mathrm{s}]} \end{gathered}$	$\begin{array}{\|l} 0 \ldots . .50 \\ 50 \ldots . .100 \\ 0 \ldots . .32 .5 \end{array}$
Parametrizing Interface		RS-232C, parametrizing connection 5 pole
Enabling Signal Code 1/5/7	[V]	5... 30
Diagnostic Signal	[V]	+10...0...-10 / = 12.5 error detection, rate max. 5 mA
EMC		61000-6-2, EN 61000-6-4
Electrical Connection Code 0/1/3/7 Code 5		6 + PE acc. to EN 175201-804 11 + PE acc. to EN 175201-804
$\begin{array}{ll}\text { Wiring Minimum } & \begin{array}{l}\text { Code 0/1/3/7 } \\ \text { Code } 5\end{array}\end{array}$	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {\left[\mathrm{mm}^{2}\right]} \end{aligned}$	7×1.0 (AWG 16) overall braid shield 8×1.0 (AWG 16) overall braid shield
Wiring Length Maximum [m]		50 (164 ft.)
Solenoid Disable: Electrical Connection Code 1/3 Wiring Minimum Wiring Length Maximum	[mm^{2}] ${ }^{\text {[m] }}$ [Female M12x1; 5p acc. to IEC-61076-2-101 0.34 (AWG 22) 50 (164 ft .)

Flow Characteristics

Electrically set to opening point 10% at $\Delta \mathrm{p} 5 \operatorname{Bar}(72.5 \mathrm{PSI})$ per metering edge

Spool Type E01

Spool Type E50

Spool Type B31

Spool Type B60

Functional Limits

$25 \%, 50 \%, 75 \%$, and 100% command signal (symmetric flow).
At asymmetric flow a reduced flow limit has to be considered.

Spool type E01M

Spool type E01U

Spool type E01S

Code 0

6 + PE acc. to EN 175201-804

Code 7

6 + PE acc. to EN 175201-804 + enable

Code 5

11 + PE acc. to EN 175201-804

Proportional Directional Control Valves
 Series D3FC

ProPxD Interface Program

The ProPxD software allows comfortable parameter setting for the module electronics. Via the clearly arranged entry mask the parameters can be noticed and modified. Storage of complete parameter sets is possible as well as printout or record as a text file for further documentation. Stored parameter sets may be loaded anytime and transmitted to other valves. Inside the electronics a non-volatile memory stores the data with the option for recalling or modification.

The PC software can be downloaded free of charge at www.parker.com/propxd.

Features

- Simple editing of all parameters.
- Depiction and documentatino of parameter sets.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR}$ XP upwards.
- Communication between PC and electronics via serial interface RS-232.

The parametrizing cable may be ordered under item no. 40982923.

Inch equivalents for millimeter dimensions are shown in (**)

© $-\square$

Surface Finish	包 Kit	凩	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3} \sqrt{\square 00.01 / 100}}{1 / 7 / 1 / 1 / 1 / 1 / 1}$	BK385	$\begin{gathered} \text { 4x M6x40 } \\ \text { ISO } 4762-12.9 \end{gathered}$	$\begin{gathered} \text { 13.2 Nm (9.7 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile: SK-D3FC Fluorocarbon: SK-D3FC-V

General Description

Series D*1FB pilot operated proportional directional valves come in 4 sizes:
$\begin{array}{ll}\text { D31FB } & \text { NG10 (CETOP 5) } \\ \text { D41FB } & \text { NG16 (CETOP 7) } \\ \text { D91FB } & \text { NG25 (CETOP 8) } \\ \text { D111FB } & \text { NG32 (CETOP 10) }\end{array}$
The valves are available with and without onboard electronics (OBE).
D*1FB OBE: The digital onboard electronics is situated in a robust metal housing, which allows usage under rough environmental conditions.
The nominal values are factory set. The cable connection to a serial RS-232 interface is available as an accessory.
D*1FB for external electronics: The parameters can be saved, changed and duplicated in combination with the digital power amplifier PWD00A-400.
Series D*1FB valve parameters can be edited with the common ProPxD software for both versions.
The D*1FB valves work with barometric feedback of the main stage to the pressure reducing pilot valve. The pilot control pressure of $25 \mathrm{Bar}(363 \mathrm{PSI}$) allows high flow rates of maximum of stability.
The innovative integrated regenerative function into the A-line (optional) allows new energy saving circuits for differential cylinders. The hybrid version can be switched between regenerative mode and standard mode at any time.

D91FB

D*1FB

D91FB OBE

D*1FBZ

Features

- Progressive flow characteristics for precise adjustment of flow rate
- High flow capacity
- Digital onboard electronics
- Center position monitoring optional
- New: Switchable regenerative hybrid version

D91FB OBE

[^1]Proportional Directional Control Valves
Series D*1FB

D*1FBR and D*1FBZ

Regenerative Valve D*1FBR

Hybrid Valve D*1FBZ

D*1FBR (Regenerative Valve)

Cylinder extending

Flow Rate in \% of Nominal Flow

Size	Spool	Port					
		A-T	P-A	P-B	B-A (R-Valve)	B-A (Hybrid)	B-T (Hybrid)
D41FBR/Z		100%	50%	100%	50%	45%	$41 \mathrm{LPM}(11 \mathrm{GPM}) \mathrm{Max}$
D91FBR/Z	$31 / 32$	100%	50%	100%	50%	50%	$98 \mathrm{LPM}(26 \mathrm{GPM}) \mathrm{Max}$
D111FBR/Z	$31 / 32$	100%	50%	100%	50%	50%	$189 \mathrm{LPM}(50 \mathrm{GPM}) \mathrm{Max}$

Bolt Kits:

D31FB	BK98	(4) $1 / 4-20 \times 1.625$ SHCS
D41FB	BK160	(4) $3 / 8-16 \times 2.5$ SHCS
		(2) $1 / 4-20 \times 2.5$ SHCS
D91FB	BK228	(6) $1 / 2-13 \times 3$ SHCS
D111FB	BK150	(6) $3 / 4-10 \times 3.5$ SHCS

Weight:

D31FB	$8.1 \mathrm{~kg}(17.9 \mathrm{lbs})$.
D41FB	$10.8 \mathrm{~kg}(23.8 \mathrm{lbs})$.
D91FB	$19.0 \mathrm{~kg}(41.9 \mathrm{lbs})$.
D111FB	$68.0 \mathrm{~kg}(149.9 \mathrm{lbs})$.

[^2]| Code | Flow LPM (GPM) at $\Delta \mathrm{p} 5$ Bar (72.5 PSI) per metering edge | | | |
| :---: | :---: | :---: | :---: | :---: |
| | D31 | D41 | D91 | D111 |
| B | - | $\begin{aligned} & 100^{314)} \\ & (26.4) \end{aligned}$ | - | - |
| C | $\begin{gathered} 754 \\ (19.8) \end{gathered}$ | $\begin{aligned} & 130^{3 / 4)} \\ & (34.3) \end{aligned}$ | - | - |
| D | $\begin{gathered} 90^{4)} \\ (23.8) \end{gathered}$ | - | - | - |
| E | $\begin{gathered} 120 \\ (31.7) \end{gathered}$ | - | $\begin{gathered} \left.250^{31} 4\right) \\ (66.0) \end{gathered}$ | - |
| F | - | $\begin{gathered} 200 \\ (52.8) \end{gathered}$ | - | - |
| H | - | - | $\begin{gathered} 400 \\ (105.7) \end{gathered}$ | - |
| L | - | - | - | $\begin{gathered} 1000 \\ (264.2) \\ \hline \end{gathered}$ |

Proportional Directional Control Valves
Series D*1FB (Onboard Electronics)

Please order plugs separately. See Accessories.
Bolt Kits:

D31FB	BK98	(4) $1 / 4-20 \times 1.625$ SHCS
D41FB	BK160	(4) $3 / 8-16 \times 2.5$ SHCS
		(2) $1 / 4-20 \times 2.5$ SHCS
D91FB	BK228	(6) $1 / 2-13 \times 3$ SHCS
D111FB	BK150	(6) $3 / 4-10 \times 3.5$ SHCS

Weight:	
D31FB	$8.4 \mathrm{~kg}(18.5 \mathrm{lbs})$.
D41FB	$11.1 \mathrm{~kg}(24.5 \mathrm{lbs})$.
D91FB	$19.3 \mathrm{~kg}(42.6 \mathrm{lbs})$.
D111FB	$68.3 \mathrm{~kg}(150.6 \mathrm{lbs})$.

Parametrizing cable OBE => RS-232
Item no. 40982923

General				
Design	Pilot operated DC valve			
Actuation	Proportional solenoid			
Size	NG10 (CETOP 5)	NG16 (CETOP 7)	NG25 (CETOP 8)	NG32 (CETOP 10)
Mounting Interface	DIN 24340 / ISO 4401 / CETOP RP121 / NFPA			
Mounting Position	Unrestricted			
Ambient Temperature [$\left.{ }^{\circ} \mathrm{C}\right]$	-20...+60; (-4 $\left.{ }^{\circ} \mathrm{F} . .+140^{\circ} \mathrm{F}\right)$			
MTTF $_{\text {D }}$ Value (OBE) [years]	75 (50)			
Vibration Resistance [g]	10 Sinus $5 \ldots 2000 \mathrm{~Hz}$ acc. IEC 68-2-6 30 Random noise $20 . . .2000 \mathrm{~Hz}$ acc. IEC 68-2-36 15 Shock acc. IEC 68-2-27			
Hydraulic				
Maximum Operating Pressure	Pilot Drain Internal: Ports P, A, B, X 350 Bar (5075 PSI); Port T, Y 185 Bar (2683 PSI) NG10: Port T, Y 15 Bar (218 PSI) Pilot Drain External: Ports P, A, B, T, X 350 Bar (5075 PSI); Port Y 185 Bar (2683 PSI) NG10: Port Y 15 Bar (218 PSI)			
Fluid	Hydraulic oil as per DIN 51524...51535, other on request			
Fluid Temperature [${ }^{\circ} \mathrm{C}$]	-20...+60; (-4 $\left.{ }^{\circ} \mathrm{F} . . .+140^{\circ} \mathrm{F}\right)$			
Viscosity Permitted $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	$\begin{aligned} & \text { 20... } 380 \text { (93... } 1761 \text { SSU) } \\ & 30 \ldots 80 \text { (139... } 371 \text { SSU) } \end{aligned}$			
Filtration	ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)			
Nominal Flow at $\Delta \mathrm{p}=\mathrm{Bar}$ (72.5 PSI) per Control Edge *	D31FB	D41FB	D91FB	D111FB
	$\begin{aligned} & 75 \text { LPM (19.8 GPM) } \\ & 90 \text { LPM (23.8 GPM) } \\ & 120 \text { LPM (31.7 GPM) } \end{aligned}$	100 LPM (26.4 GPM) 130 LPM (34.4 GPM) 200 LPM (52.9 GPM)	250 LPM (66.1 GPM) 400 LPM (105.8 GPM)	1000 LPM (264.2 GPM)
Leakage at 100 Bar (1450 PSI) [$\mathrm{ml} / \mathrm{min}]$	100	200	600	1000
Pilot Supply Pressure	Minimum 30 Bar (435 PSI) [+T/Y pressure]; Maximum 350 Bar (5075 PSI) Optimal Dynamics at 50 Bar (725 PSI)			
Pilot Flow at 100 Bar (1450 PSI)	$\begin{gathered} <0.5 \mathrm{LPM} \\ (0.13 \mathrm{GPM}) \end{gathered}$	$\begin{aligned} & \text { <1.2 LPM } \\ & \text { (0.3 GPM) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { <1.2 LPM } \\ & \text { (0.3 GPM) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { <1.2 LPM } \\ & \text { (0.3 GPM) } \\ & \hline \end{aligned}$
Pilot Flow, Step Response	2 LPM (0.5 GPM)	1.9 LPM (0.5 GPM)	4.5 LPM (1.2 GPM)	18 LPM (4.8 GPM)
Static / Dynamic				
Step Response at 100\% Step [ms]	50	75	100	180
Hysteresis [\%]	<5			
Electrical				
Duty Ratio [\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}$ ($302{ }^{\circ} \mathrm{F}$) possible			
Protection Class	Standard (as per EN175301-803) IP65 in accordance with EN60529 (plugged and mounted) DT04-2P "Deutsch" IP69K (plugged and mounted)			
Solenoid	Code "K"		Code "J"	
Supply Voltage [V]	12		24	
Current Consumption [A]	2.5		1.1	
Resistance [Ohm]	4.4		18.6	
Coil Insulation Class	F ($155^{\circ} \mathrm{C}$); ($331{ }^{\circ} \mathrm{F}$)			
Solenoid Connection	Connector as per EN 175301-803 (code W), DT04-2P "Deutsch" connector (code J). Solenoid identification as per ISO 9461.			
Wiring Minimum [mm²]	3×1.5 (AWG 16) overall braid shield			
Wiring Length Maximum [m]	50 (164 ft.)			
* Flow rate for different Δp per control edge: $Q_{x}=Q_{\text {Nom. }} \cdot \sqrt{\frac{\Delta p_{x}}{\Delta p_{\text {Nom. }}}}$A01_Cat2500.indd, ddp, 04/19 \quad Continued on next page				

Electrical Monitor Switch (Offboard Electronics)	
Protection Class	IP65 in accordance with EN 60529 (plugged and mounted)
Ambient Temperature [${ }^{\circ} \mathrm{C}$]	0...70; (32 ${ }^{\circ} \mathrm{F} . .158^{\circ} \mathrm{F}$)
Supply Voltage/Ripple [V]	18...42, ripple <10\% eff.
$\begin{array}{l}\text { Current Consumption } \\ \text { without Load }\end{array}$ $[\mathrm{mA}]$	<30
Maximum Output Current per Channel, Ohmic $[\mathrm{mA}]$	400
Minimum Output Load per Channel, Ohmic [kOhm]	100
Max. output drop at 0.2A [V] Max. output drop at 0.4A [V]	$\begin{array}{\|l\|l\|} \hline<1.1 \\ <1.6 \end{array}$
EMV	EN 50081-1 / EN50082-2
Maximum tol. Ambient Field Strength	1200
Minimum Distance to next AC Solenoid	0.1 (0.2 ft.)
Interface	4+PE acc. IEC 61076-2-101 (M12)
Wiring Minimum [$\left.\mathrm{mm}^{2}\right]$	5×0.5 (AWG 20) overall braid shield
Wiring Length Maximum [m]	50 (164 ft.)

Electrical (Onboard Electronics)		
Duty Ratio	[\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}$ ($302^{\circ} \mathrm{F}$) possible
Protection Class		IP65 in accordance with EN 60529 (plugged and mounted)
Supply Voltage/ripple DC	[V]	18...30, ripple < 5% eff., surge free
Current Consumption Maximum	[A]	2.0
Pre-fusing Medium Lag	[A]	2.5
Input Signal Codes F0, M0 \& W5 Voltage Codes SO \& W5 Current Code G0	$\begin{array}{r} {[\mathrm{V}]} \\ {[\mathrm{mA}]} \\ {[\mathrm{mA}]} \end{array}$	$+10 \ldots-10$, ripple $<0.01 \%$ eff., surge free, $\mathrm{Ri}=100 \mathrm{kOhm}, 0 \ldots+10 \mathrm{~V}$ $4 \ldots 12 \ldots 20$, ripple $<0.01 \%$ eff., surge free, $R i=2000 \mathrm{hm}, 12 \ldots 20 \mathrm{~mA}$ $<3.6 \mathrm{~mA}=$ enable off, $>3.8 \mathrm{~mA}=$ enable on (acc. to NAMUR NE43) $+20 \ldots 0 . \ldots-20$, ripple $<0.01 \%$ eff., surge free, $\mathrm{Ri}=2000 \mathrm{hm}, 0 \ldots+20 \mathrm{~mA}$
Differential Input Maximum Codes F0, G0, M0 \& S0 Code W5 Voltage References:	[V]	30 for terminal D and E against PE (terminal G) 11 for terminal D and E against OV (terminal B) 30 for terminal 4 and 5 against PE (terminal PE) 11 for terminal 4 and 5 against $0 V$ (terminal 2) Not a powered output Only for 10K Ohm pots
Channel Recall Signal	[V]	0...2.5: off / 5...30: on / Ri = 100 kOhm
Adjustment Ranges: Minimum Maximum Ramp	[\%] [\%] [s]	$0 . . .50$ 50... 100 0... 32.5
Interface		RS-232, parametrizing connection 5 pole
EMC		EN 61000-6-2, EN 61000-6-4
Central Connection Codes F0, G0 \& S0 Code W5		6 + PE acc. to EN 175201-804 11 + PE acc. to EN 175201-804
Wiring Minimum Codes FO, GO \& SO Code W5	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {\left[\mathrm{mm}^{2}\right]} \end{aligned}$	7×1.0 (AWG16) overall braid shield 11×1.0 (AWG20) overall braid shield
Wiring Length Maximum	[m]	50 (164 ft.)

Continued on next page

Specifications (cont.)

Electrical (Hybrid Option)			
Duty Ratio [\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible		
Protection Class	IP65 in accordanc	and m	
	D41	D91	D111
Supply Voltage [V]	24	24	24
Tolerance Supply Voltage [\%]	± 10	± 10	± 10
Current Consumption [A]	1.21	0.96	1.29
Power Consumption [W]	29	23	31
Solenoid Connection	Connector as per EN 175301-803		
Wiring Minimum [mm^{2}]	3×1.5 recommended		
Wiring Length Maximum [m]	50 (164 ft.) recommended		

Performance Curves

D*1FB Flow

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

D*1FB OBE Flow

(Electrically set to opening point 10\%)

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

${ }^{1)}$ Flow direction depending on ordering code.

D*1FB R/Z (Regenerative and Hybrid)

D41FB R/Z D91FB R/Z

Spool Code R/Z31/32

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

D41FB R/Z OBE

D91FB R/Z OBE
Spool Code R/Z31/32

Spool Code R/Z31/32

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Monitor Switch M12x1 Pin Assignment

1 + Supply 18...42V
2 Output B (normally closed)
3 OV
4 Output A (normally closed)
5 Earth ground

Signal	Output A (pin 4)	Output B (pin 2)
neutral	closed	closed
\square	open	closed
\square	closed	open

The neutral position is monitored. The signal changes after less than 10% of the spool stroke.

Electrical Monitor Switch

Protection Class		IP65 in accordance with EN 60529 (plugged and mounted)
Ambient Temperature	$\left[{ }^{\circ} \mathrm{C}\right]$	$0 \ldots . .70 ;\left(32^{\circ}{ }^{\circ}\right.$...158

Code FO, MO
A
6 + PE acc. to EN 175201-804

Code W5

11 + PE acc. to EN 175201-804

ProPxD Interface Program

The ProPxD software allows quick and easy setting of the digital valve electronics. Individual parameters as well as complete settings can be viewed, changed and saved via the comfortable user interface. Parameter sets saved in the non-volatile memory can be loaded to other valves of the same type or printed out for documentation purposes.

Features

- Simple editing of all parameters.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR} 95$ upwards.
- Communication between PC and electronics via serial interface RS-232.
The valve electronics cannot be connected to a PC with a standard USB cable - this can result in damages of PC and/or valve electronics.
Simple to use interface program. Download free of charge www.parker.com/propxd

The parametrizing cable may be ordered under item no. 40982923.

Pilot Flow - Pilot Oil Inlet (Supply) and Outlet (Drain)

O open, - closed

Pilot oil			
Inlet	Drain	B	C
internal	external	\bigcirc	\bigcirc
external	external	\bigcirc	
internal	internal	\bigcirc	\bigcirc
external	internal		\bigcirc

D31FBB/E D31FBR

D41FBB/E D41FBR

D91FBB/E D91FBR

D111FBB/E D111FBR

D41FBZ

(drawn offset)
D111FBZ

D31FB

Surface Finish	$\square \mathrm{O}=\mathrm{Cl}$	洓 级	5	Seal \bigcirc Kit
$\frac{\sqrt{R_{\max } 6.3}-\square 0_{0.01 / 100}}{1 / / / / 1 / 1 / 1 / 1 /}$	BK385 BK98	4x M6x40 DIN 91212.9 4x 1／4－20x1．62	$\begin{gathered} \text { 13.2 } \mathrm{Nm} \text { (9.7 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D31FB Fluorocarbon：SK－D31FBV

D41FB
 $\bigcirc \square$

Position control only for spool code B / E^{*}

Surface Finish	包 Kit	眧	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}-\square 0_{0.01 / 100}}{1 / 1 / 1 / 1 / 7 / 1 /}$	$\begin{aligned} & \hline \text { BK320 } \\ & \text { BK160 } \end{aligned}$	$2 \times \mathrm{M} 6 \times 55$ $4 \times \mathrm{M} 10 \times 60$ DIN 91212.9 $4 \times 3 / 8-16 \times 2.5$ $2 \times 1 / 4-20 \times 2.5$	$\begin{gathered} \hline \text { 13.2 Nm (9.7 lb.-ft.) } \\ 63 \mathrm{Nm}(46.5 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D41FB Fluorocarbon：SK－D41FBV

A01＿Cat2500．indd，ddp，04／19

D91FB
 D91FB

Surface Finish	$\square \mathrm{Qit}$	目) 碞	2	Seal \bigcirc Kit
$\frac{\sqrt{R_{\max } 6.3} \upharpoonright \sqrt{\square 0.01 / 100}}{1 / / / / 1 / / 1 / 1 / 7}$	$\begin{aligned} & \text { BK360 } \\ & \text { BK228 } \end{aligned}$	$\begin{gathered} 6 \times \text { M12x75 } \\ \text { DIN } 91212.9 \\ 6 \times 1 / 2-13 \times 3.0 \end{gathered}$	$\begin{gathered} 108 \mathrm{Nm} \text { (79.7 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile: SK-D91FB Fluorocarbon: SK-D91FBV

D111FB

Surface Finish	包 Kit	冒 级	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}-\sqrt{0.01 / 100}}{1 / 7 / 1 / 7 / 71 /}$	BK386 BK150	$\begin{gathered} \hline 6 \times \mathrm{M} 20 \times 90 \\ \text { DIN } 91212.9 \\ 6 \times 3 / 4-10 \times 3.5 \end{gathered}$	$\begin{gathered} \hline 517 \mathrm{Nm} \text { (373.9 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D111FB Fluorocarbon：SK－D111FBV

Dimension with DT04－2P＂Deutsch＂Connector

D31FB OBE

Monitor switch

Surface Finish		冒 级	5	Seal \bigcirc Kit
$\frac{\sqrt{R_{\max } 6.3}-\square 0.01 / 100}{1 / / / / / 1 / / 1 / 1 /}$	$\begin{gathered} \text { BK385 } \\ \text { BK98 } \end{gathered}$	$\begin{gathered} \hline 4 \times \text { M6x40 } \\ \text { DIN } 91212.9 \\ 4 \times 1 / 4-20 \times 1.62 \end{gathered}$	$\begin{gathered} \hline \text { 13.2 } \mathrm{Nm} \text { (9.7 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D31FB Fluorocarbon：SK－D311FBV

D41FB OBE

Surface Finish	包 Kit	囲 㱼	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}-\square 0_{0.01 / 100}}{1 / / / 1 / 1 / 7 / 1 / 7}$	$\begin{aligned} & \text { BK320 } \\ & \text { BK160 } \end{aligned}$	$2 \times \mathrm{M} 6 \times 55$ $4 \times \mathrm{M} 10 \times 60$ DIN 91212.9 $4 \times 3 / 8-16 \times 2.5$ $2 \times 1 / 4-20 \times 2.5$	$\begin{gathered} \text { 13.2 Nm (9.7 lb.-ft.) } \\ 63 \mathrm{Nm}(46.5 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D41FB Fluorocarbon：SK－D41FBV

A01＿Cat2500．indd，ddp，04／19

D91FB OBE

Surface Finish	包 Kit	$\text { 自 } \xi^{2}$	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3} \sqrt{\square 0.01 / 100}}{1 / 1 / 1 / 1 / 1 / 1 / 7}$	BK360 BK228	6x M12x75 DIN 91212.9 $6 x 1 / 2-13 \times 3.0$	$\begin{gathered} 108 \mathrm{Nm}(79.7 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D91FB Fluorocarbon：SK－D91FBV

D111FB OBE

（－）-

Surface Finish	包 Kit		2	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3} \sqrt{\square 0.01 / 100}}{1 / 1 / 1 / 7 / 1 / 7}$	BK386 BK150	$6 \times \mathrm{M} 20 \times 90$ DIN 91212.9 $6 \times 3 / 4-10 \times 3.5$	$\begin{gathered} 517 \mathrm{Nm}(373.9 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D111FB Fluorocarbon：SK－D111FBV

A01＿Cat2500．indd，ddp，04／19

Proportional Directional Control Valves
Series D*1FB*EE with Atex Coils

General Description

Series D*1FB*EE pilot operated proportional directional valves come in 4 sizes:

D31FB*EE NG10 (CETOP 5)
D41FB*EE NG16 (CETOP 7)
D91FB*EE NG25 (CETOP 8)
D111FB*EE NG32 (CETOP 10)
The D*1FB*EE series with explosion proof solenoids is based on the standard $\mathrm{D}^{*} 1 \mathrm{FB}$ series. The specific solenoid design allows the usage in hazardous environments. The explosion proof class is

$$
C \in(\varepsilon x\rangle \| 2 G
$$

Ex mbe IIT4
for use in zone 1 (conform to ATEX).
The parameters can be saved, changed and duplicated in combination with the digital power amplifier PWD00A-400 (to be used in an explosion proof cabinet or outside of the hazardous area).

The valve parameters can be edited with the common ProPxD software.

Features

- Progressive flow characteristics for precise adjustment of flow rate
- High flow capacity

D91FB

D91FB*EE

[^3]
Ordering Information

Code	Flow LPM (GPM) at $\Delta \mathrm{p} 5 \mathrm{Bar}$ (72.5 PSI) per metering edge			
	D31	D41	D91	D111
B	-	$\begin{aligned} & 100^{2)} \\ & (26.4) \end{aligned}$	-	-
C	$\begin{gathered} 75^{2)} \\ (19.8) \end{gathered}$	$\begin{aligned} & 130^{2)} \\ & (34.3) \end{aligned}$	-	-
D	$\begin{gathered} 90 \\ (23.8) \end{gathered}$	-	-	-
E	$\begin{gathered} 120 \\ (31.7) \end{gathered}$	-	$\begin{aligned} & 250^{2)} \\ & (66.1) \end{aligned}$	-
F	-	$\begin{gathered} 200 \\ (52.8) \end{gathered}$	-	-
H	-	-	$\begin{gathered} 400 \\ (105.8) \end{gathered}$	-
L	-	-	-	$\begin{gathered} 1000 \\ (264.2) \end{gathered}$

2) Not for spool type B31 and B32

Mounting Bolt Kits:
D31FB*EE BK98 D41FB*EE BK160 D91FB*EE BK228 D111FB*EE BK150

Weight:

D31FB*EE	$\quad 9.4 \mathrm{~kg}(20.7 \mathrm{lbs})$.
D41FB*EE	$12.8 \mathrm{~kg}(28.2 \mathrm{lbs})$.
D91FB*EE	$20.3 \mathrm{~kg}(44.8 \mathrm{lbs})$.
D111FB*EE	$69.3 \mathrm{~kg}(152.8 \mathrm{lbs})$.

Performance Curves

D*1FB Flow

All characteristic curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Proportional Directional Control Valves

Specifications

Series D*1FB*EE with Atex Coils

General				
Design	Pilot operated DC valve			
Actuation	Proportional solenoid			
Size	NG10 (CETOP 5)	NG16 (CETOP 7)	NG25 (CETOP 8)	NG32 (CETOP 10)
Mounting Interface	DIN 24340 / ISO 4401 / CETOP RP121 / NFPA			
Mounting Position	unrestriced			
Ambient Temperature [${ }^{\circ} \mathrm{C}$]	$-20 \ldots+40 ;\left(-{ }^{\circ} \mathrm{F} \ldots+104^{\circ} \mathrm{F}\right)$			
MTTF ${ }_{\text {d }}$ Value [years]	75			
Vibration Resistance [g]	10 Sinus $5 . . .200 \mathrm{~Hz}$ acc. IEC 68-2-6 30 Random noise $20 . . .20 \mathrm{~Hz}$ acc. IEC 68-2-36 15 Shock acc. IEC 68-2-27			
Hydraulic				
Maximum Operating Pressure	Pilot Drain Internal: Ports P, A, B, X 350 Bar (5075 PSI); Port T, Y 185 Bar (2683 PSI) NG10: Port T, Y 15 Bar (218 PSI) Pilot Drain External: Ports P, A, B, T, X 350 Bar (5075 PSI); Port Y 185 Bar (2683 PSI) NG10: Port Y 15 Bar (218 PSI)			
Fluid	Hydraulic oil as per DIN 51524...51535, other on request			
Fluid temperature [${ }^{\circ} \mathrm{C}$]	$-20 \ldots+40 ;\left(-{ }^{\circ} \mathrm{F} . . .+104^{\circ} \mathrm{F}\right)$			
Viscosity Permitted $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	20... 380 (93... 1761 SSU)$30 \ldots 80$ (139... 371 SSU)			
Filtration	ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)			
Nominal Flow at $\Delta \mathrm{p}=\mathrm{Bar}$ (72.5 PSI) per Control Edge *	$\begin{aligned} & \hline 75 \text { LPM (19.8 GPM) } \\ & 90 \text { LPM (23.8 GPM) } \\ & 120 \text { LPM (31.7 GPM) } \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \text { LPM (26.4 GPM) } \\ & 130 \text { LPM (34.4 GPM) } \\ & \text { 200 LPM (52.9 GPM) } \\ & \hline \end{aligned}$	250 LPM (66.1 GPM) 400 LPM (105.8 GPM)	1000 LPM (264.2 GPM)
Leakage at 100 Bar [ml/min]	100	200	600	1000
Pilot Supply Pressure	Minimum 30 Bar (435 PSI) [+T/Y presure]; Maximum 350 Bar (5075 PSI)) Optimal Dynamics at 50 Bar (725 PSI)			
Pilot flow at 100 Bar	$\begin{gathered} <0.5 \mathrm{LPM} \\ \text { (0.13 GPM) } \end{gathered}$	<1.2	<1.2	<1.2
Pilot Flow, Step Response	2 LPM (0.5 GPM)	1.9 LPM (0.5 GPM)	4.5 LPM (1.2 GPM)	18 LPM (4.8 GPM)
Static / Dynamic				
Step Response at 100\% Step [ms]	50	75	100	180
Hysteresis [\%]	<5			
Electrical				
Duty Ratio [\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible			
Protection Class	c $\left.\in \varepsilon_{x}\right\rangle$ II 2 G, Ex mbe II T4, IP66 (plugged and mounted)			
Solenoid Code	\mathbf{K}		J	
Supply Voltage [V]	12		24	
Current Consumption [A]	2.3		1.15	
Resistance [Ohm]	3.7		14.8	
Solenoid Connection	Box with M20x1.5 entry for cableglands. Solenoid identificationas per ISO 9461.			
Wiring Minimum [mm²]	3×1.5 recommended			
Wiring Length Maximum [m]	50 (164 ft.) recommended			

* Flow rate for different Δp per control edge: $Q_{\mathrm{x}}=Q_{\text {Nom. }} \cdot \sqrt{\frac{\Delta p_{\mathrm{x}}}{\Delta p_{\text {Nom. }}}}$

Pilot Flow

Pilot Oil Inlet (supply) and Outlet (drain)

D31FB

D41FB

Open, closed

Pilot oil			
Inlet	Drain	B	C
internal	external	\bigcirc	\bigcirc
external	external	\bigcirc	\bigcirc
internal	internal	\bigcirc	\bigcirc
external	internal	\bigcirc	\bigcirc

D91FB

O open, closed

Pilot oil			
Inlet	Drain	B	C
internal	external	\bigcirc	\bigcirc
external	external	\bigcirc	\bigcirc
internal	internal	\bigcirc	\bigcirc
external	internal	\bigcirc	\bigcirc

D111FB

open, closed

Pilot oil			
Inlet	Drain	B	C
internal	external	\bigcirc	\bigcirc
external	external		\bigcirc
internal	internal	\bigcirc	\bigcirc
external	internal		\bigcirc

D31FB＊EE

Surface Finish	呈 Kit	目 ${ }^{\text {c }}$	$\xrightarrow{\square}$	Seal \bigcirc Kit
$\frac{\sqrt{R_{\max } 6.3} \sqrt{\square 0.01 / 100}}{1 / 7 / 71 / 7 / 1 / 7}$	$\begin{gathered} \text { BK385 } \\ \text { BK98 } \end{gathered}$	4x M6x40 DIN 91212.9 4x 1／4－20x1．62	$\begin{gathered} \hline \text { 13.2 } \mathrm{Nm}(9.7 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D31FB Fluorocarbon：SK－D31FBV

D41FB＊EE

Surface Finish	包 Kit	周	59	Seal Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}-\square 0_{0.01 / 100}}{1 / / / / / / / / / / 1 /}$	$\begin{aligned} & \text { BK320 } \\ & \text { BK160 } \end{aligned}$	$2 \times \mathrm{M} 6 \times 55$ $4 \times \mathrm{M} 10 \times 60$ DIN 91212.9 $4 \times 3 / 8-16 \times 2.5$ $4 \mathrm{X} 3 / 8-16 \times 2.5$	$\begin{gathered} \text { 13.2 Nm (9.7 lb.-ft.) } \\ 63 \mathrm{Nm}(46.5 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D41FB Fluorocarbon：SK－D41FBV

A01＿Cat2500．indd，ddp，04／19

D91FB＊EE

Surface Finish	包 Kit	成 \％	S	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3} \sqrt{00.01 / 100}}{1 / 1 / / 1 / 1 / 1 / 1 / 7}$	$\begin{aligned} & \hline \text { BK360 } \\ & \text { BK228 } \end{aligned}$	$6 \times$ M12x75 DIN 91212.9 $6 \times 1 / 2-13 \times 3.0$	$\begin{gathered} 108 \mathrm{Nm}(79.7 \mathrm{lb} . \mathrm{ft}) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D91FB Fluorocarbon：SK－D91FBV

D111FB＊EE

Surface Finish	包 Kit		$\xrightarrow{2}$	Seal \bigcirc Kit
$\frac{\sqrt{R_{\max } 6.3} \sqrt{\square 0.01 / 100}}{1 / 7 / 7 / 7 / 1 / 7 /}$	$\begin{aligned} & \text { BK386 } \\ & \text { BK150 } \end{aligned}$	$\begin{gathered} \text { 6x M20x90 } \\ \text { DIN } 91212.9 \\ 6 \times 3 / 4-10 \times 3.5 \end{gathered}$	$\begin{gathered} 517 \mathrm{Nm}(373.9 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D111FB Fluorocarbon：SK－D111FBV

General Description

Series D*9FF main-stage, pilot operated, proportional directional control valves are operated with remote hydraulic hand controllers. Valves are available in sizes NG10 (CETOP 5), NG16 (CETOP 7), NG25 (CETOP 8) and NG32 (CETOP 10).
Typical applications include reproducible control of actuator speed in rapid/slow speed profiling, and smooth acceleration and deceleration performance.

Features

- Standard DIN/ISO/CETOP/NFPA interfaces
- Progressive flow characteristics for improved low flow resolution
- Spring centered main stage spool
- 2:1 ratio spool options

Specifications				
Interface DIN	NG10 (CETOP 5)	$\begin{gathered} \text { NG16 } \\ \text { (CETOP 7) } \end{gathered}$	$\begin{gathered} \text { NG25 } \\ \text { (CETOP 8) } \end{gathered}$	NG32 (CETOP 10)
Flow Rating @ $10 \operatorname{Bar}(150 \mathrm{PSI}) \Delta \mathrm{p}(\mathrm{P} \rightarrow \mathrm{A}, \mathrm{B} \rightarrow \mathrm{T})$ (Spool options up to) LPM (GPM)	75 (20)	200 (53)	400 (106)	1000 (264)
Pilot Flow - Continuous LPM (GPM)	1.2 (0.3)	1.2 (0.3)	1.2 (0.3)	1.2 (0.3)
Step Response (time to reach 90\% of a 100\% step command) ms	60	75	100	200

Hysteresis	$\%$	<5
Repeatability	$\%$	<2
Operating Pressure Port P, A, B, T\quad Bar (PSI)	$345 \quad$ (5000) max.	
Pilot Pressure Ranges	Bar (PSI)	$0-25$ (0-363 PSI)
Fluid Cleanliness Level	ISO Class 16/13	
Fluid Viscosity, Recommended	$80-1000 \mathrm{SSU}$	
Fluid Temperature, Recommended	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ $\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$	
Ambient Operating Temperature	$-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
$\left(-58^{\circ} \mathrm{F}\right.$ to $\left.+212^{\circ} \mathrm{F}\right)$		

Performance Curves

D*9FF Flow Characteristics
at $\Delta p=5 \operatorname{Bar}(72.5 \mathrm{PSI})$ per metering edge

[^4]

Sine Spool Options - Spool Type and Flow Codes								
Code		Sine Spool Type	Code	Flow at $\Delta \mathrm{p} 5$ Bar (72.5 PSI) per metering edge				
$Q_{A}=Q_{B}$	$Q_{A}>Q_{B}{ }^{1)}$			$\begin{gathered} \text { D39 } \\ \text { LPM (GPM) } \\ \hline \end{gathered}$	$\begin{gathered} \text { D49 } \\ \text { LPM (GPM) } \end{gathered}$	$\begin{gathered} \text { D99 } \\ \text { LPM (GPM) } \end{gathered}$	$\begin{gathered} \text { D119 } \\ \text { LPM (GPM) } \end{gathered}$	
E01	B31	\|x	ctid	C	75 (20)	-	-	-
E02	B32		F	-	200 (53)	-	-	
			H	-	-	400 (106)	-	
			L	-	-	-	1000 (264)	

V-Notch Spool Options - Spool Type and Flow Codes							
Code		V-Notch Spool Type	Code	Flow at $\Delta \mathrm{p} 5$ Bar (72.5 PSI) per metering edge			
$\mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{B}}$	$Q_{A}>Q_{B}{ }^{1}$			$\begin{gathered} \text { D39 } \\ \text { LPM (GPM) } \end{gathered}$	$\begin{aligned} & \text { D49 } \\ & \text { LPM (GPM) } \end{aligned}$	$\begin{gathered} \text { D99 } \\ \text { LPM (GPM) } \end{gathered}$	$\begin{gathered} \text { D119 } \\ \text { LPM (GPM) } \end{gathered}$
E21	B41	X ${ }^{1}$	B	-	-	-	-
E22	B42		D	-	120 (32)	-	-
1) Redu Nomi Code	ced Flow nal Flow A* for spo	on Port B, on Port A $Q_{B}>Q_{A}$ optional	F L	-	-	300 (79)	- $1000(264)$

Bolt Kits:

D39FF	BK98	(4) $1 / 4-20 \times 1.62$ SHCS
D49FF	BK160	(4) $3 / 8-16 \times 2.5$ SHCS
		(2) $1 / 4-20 \times 2.5$ SHCS
D99FF	BK228	(6) $1 / 2-13 \times 3.0$ SHCS
D119FF	BK150	(6) $3 / 4-10 \times 3.5$ SHCS
	Weight:	
	D39FF	$7.1 \mathrm{~kg} \mathrm{(16.0} \mathrm{lbs)}$.
	D49FF	$10.8 \mathrm{~kg}(25.0 \mathrm{lbs})$.
	D99FF	$19.0 \mathrm{~kg}(42.0 \mathrm{lbs})$.
	D119FF	$62.0 \mathrm{~kg}(136.0 \mathrm{lbs})$.

D39FF

D49FF

D99FF

Inch equivalents for millimeter dimensions are shown in (**)

๑ஏ

D119FF

Inch equivalents for millimeter dimensions are shown in (**)

$\bigcirc \square$

Bolt Kits, Subplates, Mounting Interface

Interface	Valve	Bolt Kit	Qty	Size	Subplate ${ }^{(1)}$	Port Size	Port Location
NG10 CETOP 5	D39F*	$\begin{aligned} & \text { BK98 } \\ & \text { BK385 } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 / 4-20 \times 1.62 " \\ & \text { M6 x } 40 \mathrm{~mm} \end{aligned}$	SPD31D6NS35 SPD31D6NAS35 SPD31D6SS35 SPD31D6SAS35	$\begin{aligned} & \text { 3/4" NPTF } \\ & \text { 3/4" NPTF } \\ & \text { \#12 SAE } \\ & \text { \#12 SAE } \\ & \hline \end{aligned}$	Bottom Side Bottom Side
NG16 CETOP 7	D49F*	$\begin{aligned} & \text { BK160 } \\ & \text { BK320 } \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 3 / 8-16 \times 2.5^{\prime \prime} \\ & 1 / 4-20 \times 2.25^{\prime \prime} \\ & \text { M10 x } 60 \mathrm{~mm} \\ & \text { M } 6 \times 55 \mathrm{~mm} \end{aligned}$	SPD46SA	\#12 SAE	Side
NG25 CETOP 8	D99F*	$\begin{aligned} & \text { BK228 } \\ & \text { BK360 } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 / 2-13 \times 3^{\prime \prime} \\ & \text { M12 } \times 75 \end{aligned}$	SPD66NS35 SPD66NAS35 SPD68NS35 SPD68NAS35 SPD610NS35 SPD610NAS35 SPD610SS35 SPD610SAS35	$\begin{aligned} & \text { 3/4" NPTF } \\ & \text { 3/4" NPTF } \\ & \text { 1" NPTF } \\ & \text { 1" NPTF } \\ & \text { 1 1/4" NPTF } \\ & \text { 1 1/4" NPTF } \\ & \text { \#20 SAE } \\ & \text { \#20 SAE } \\ & \hline \end{aligned}$	Bottom Side Bottom Side Bottom Side Bottom Side
NG32 CETOP 10	D119F*	$\begin{aligned} & \text { BK150 } \\ & \text { BK386 } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 3 / 4-10 \times 3.5^{\prime \prime} \\ & \text { M20 x } 90 \end{aligned}$	SPD1010N35 SPD1012N35	$\begin{aligned} & \hline 1 \text { 1/4" NPTF } \\ & 1 \text { 1/2" NPTF } \end{aligned}$	Bottom Bottom

(1) Ductile iron; maximum operating pressure: 350 Bar (5075 PSI). Refer to valve specificatons for actual recommended maximums.

Note: All subplates listed use SAE mounting bolt hardware. Refer to Catalog HY14-2500/US for metric options.

General Description

Series D*1FC pilot operated proportional directional valves come in 4 sizes:
D31FC NG10 (CETOP 5)
D41FC NG16 (CETOP 7)
D91FC NG25 (CETOP 8)
D111FC NG32 (CETOP 10)
The digital onboard electronics is situated in a robust metal housing, which allows usage under rough environmental conditions.

The nominal values are factory set. The cable connection to a serial RS-232 interface is available as an accessory.

The innovative integrated regenerative function into the A-line (optional) allows energy saving circuits for differential cylinders. The hybrid version can be switched between regenerative mode and standard mode at any time.

Features

- Progressive flow characteristics for precise adjustment of flow rate
- Low hysteresis
- High dynamics
- High flow capacity
- Center position monitoring optional
- Energy saving A-regeneration optional
- Switchable hybrid version optional

Standard D*1FC

Hybrid D*1FCZ

Further literature about the opportunities of energy savings and more functional details of the integrated regeneration is available on request at Parker HVD Technical Service.

D41FC

1. WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
A01_Cat2500.indd, ddp, 04/19

D*1FCR and D*1FCZ

[Regenerative Valve $\mathrm{D}^{* 1 F C R}$

Hybrid Valve D*1FCZ

D*1FCR (Regenerative Valve)
Cylinder extending
(high speed)

Cylinder extending standard mode (high force)

Flow Rate in \% of Nominal Flow

Size	Spool	Port					
		A-T	P-A	P-B	B-A (R-Valve)	B-A (Hybrid)	B-T (Hybrid)
D41FBR/Z	$31 / 32$	100%	50%	100%	50%	45%	41 LPM (11 GPM) Max
D91FBR/Z	$31 / 32$	100%	50%	100%	50%	50%	98 LPM (26 GPM) Max
D111FBR/Z	$31 / 32$	100%	50%	100%	50%	50%	189 LPM (50 GPM) Max

General				
Design	Pilot operated DC valve			
Actuation	Proportional solenoid			
Size	$\begin{gathered} \text { NG10 (CETOP 5) } \\ \text { D31 } \end{gathered}$	$\begin{gathered} \text { NG16 (CETOP 7) } \\ \text { D41 } \end{gathered}$	$\begin{gathered} \text { NG25 (CETOP 8) } \\ \text { D91 } \end{gathered}$	$\begin{aligned} & \text { NG32 (CETOP 10) } \\ & \text { D111 } \end{aligned}$
Mounting Interface	DIN 24340 / ISO 4401 / CETOP RP121 / NFPA			
Mounting Position	Unrestricted			
Ambient Temperature [$\left.{ }^{\circ} \mathrm{C}\right]$	$-20 \ldots+60 ;\left(-{ }^{\circ} \mathrm{F} . . .+140^{\circ} \mathrm{F}\right)$			
MTTF $_{\text {D }}$ Value [years]	50			
Vibration Resistance [g]	10 Sinus 5 ... 200 Hz acc. IEC 68-2-6 30 Random noise $20 \ldots 20 \mathrm{~Hz}$ acc. IEC 68-2-36 15 Shock acc. IEC 68-2-27			
Hydraulic				
Maximum Operating Pressure	Pilot Drain Internal Ports P, A, B, X 350 Bar (5075 PSI); Ports T, Y 210 Bar (3045 PSI) Pilot Drain External Ports P, A, B, T, X 350 Bar (5075 PSI); Port Y 210 Bar (3045 PSI)			
Fluid	Hydraulic oil as per DIN 51524...51535, other on request			
Fluid Temperature [$\left.{ }^{\circ} \mathrm{C}\right]$	$-20 \ldots+60 ;\left(-4^{\circ} \mathrm{F} \ldots+140^{\circ} \mathrm{F}\right)$			
Viscosity Permitted $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	$\begin{aligned} & \text { 20... } 380 \text { (93... } 1761 \text { SSU) } \\ & 30 \ldots 80 \text { (139... } 371 \text { SSU) } \end{aligned}$			
Filtration	ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)			
Nominal Flow at $\Delta \mathrm{p}=5 \mathrm{Bar}$ (72.5 PSI) per Control Edge ${ }^{1)}$	$\begin{gathered} \text { 90/120 LPM } \\ (23.8 / 31.7 \text { GPM) } \end{gathered}$	$\begin{aligned} & 200 \mathrm{LPM} \\ & \text { (52.9 GPM) } \end{aligned}$	$\begin{gathered} 450 \text { LPM } \\ \text { (119.0 GPM) } \end{gathered}$	$\begin{aligned} & 1000 \text { LPM } \\ & \text { (264.6 GPM) } \end{aligned}$
Leakage at 100 Bar (1450 PSI) Main Stage [ml/min]	200 (12 cu. in.)	200 (12 cu. in.)	600 (37 cu. in.)	1000 (61 cu. in.)
Pilot Stage $\quad[\mathrm{ml} / \mathrm{min}]$	<100 (6.1 cu. in.)			
Pilot Supply Pressure	$20 \mathrm{Bar}(290 \mathrm{PSI})$ to $350 \mathrm{Bar}(5075 \mathrm{PSI})$			
Pilot Flow, Step Response	$\begin{gathered} 2.9 \mathrm{LPM} \\ \text { (0.8 GPM) } \end{gathered}$	$\begin{gathered} 4.1 \mathrm{LPM} \\ \text { (1.1 GPM) } \end{gathered}$	$\begin{aligned} & 6.7 \text { LPM } \\ & \text { (1.8 GPM) } \end{aligned}$	$\begin{aligned} & \text { 15.0 LPM } \\ & \text { (4.0 GPM) } \end{aligned}$
Static / Dynamic				
Step Response at 100\% Step ${ }^{2)}$ [ms]	35	37	66	120
Hysteresis [\%]	≤ 0.1			
Sensitivity [\%]	≤ 0.5			
${ }^{1)}$ Flow rate for different Δp per control edge: $Q_{x}=Q_{\text {Nom. }} \cdot \sqrt{\frac{\Delta p_{x}}{\Delta p_{\text {Nom. }}}}$				

Electrical		
Duty Ratio	[\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}$ ($302^{\circ} \mathrm{F}$) possible
Protection Class		IP65 in accordance with EN 60529 (plugged and mounted)
Supply Voltage/Ripple DC	[V]	$18 . .30$, ripple $<5 \%$ eff., surge free
Current Consumption Maximum	[A]	2.0
Pre-fusing Medium Lag	[A]	2.5
Input Signal	$\begin{array}{r} {[\mathrm{V}]} \\ {[\mathrm{kOhm}]} \\ {[\mathrm{mA}]} \\ {[\mathrm{Ohm}]} \\ {[\mathrm{mA}]} \\ \\ {[\mathrm{Ohm}]} \end{array}$	```+10\ldots..0...-10, ripple < 0.01 % eff., surge free, 0...+10V P\longrightarrow>A (P—>B) 100 20\ldots.....-20, ripple < 0.01 % eff., surge free, 0...+20 mA P\longrightarrow>A (P\longrightarrow>B) 200 4..12...20, ripple < 0.01 % eff., surge free, 12...20mA P\longrightarrow>A <3.6 mA = enable off, > 3.8 mA = enable on (acc. to NAMUR NE43) 200```
Differential Input Maximum Code 0/7 Code 0	$\begin{aligned} & {[\mathrm{V}]} \\ & {[\mathrm{V}]} \end{aligned}$	30 for terminal D and E against PE (terminal G) 11 for terminal D and E against OV (terminal B)
Adjustment Ranges: Minimum Maximum Ramp	[\%] [\%] [s]	$0 . . .50$ 50... 100 0... 32.5
Interface		RS-232, parametrizing connection 5 pole
EMC		EN 61000-6-2, EN 61000-6-4
Electrical Connection		6 + PE acc. to EN 175201-804
Wiring Minimum	[mm^{2}]	7×1.0 (AWG16) overall braid shield
Wiring Length Maximum	[m]	50 (164 ft.)
Electrical (Hybrid Option)		
Duty Ratio	[\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}$ ($302^{\circ} \mathrm{F}$) possible
Protection Class		IP65 in accordance with EN 60529 (plugged and mounted)
Supply Voltage	[V]	24
Tolerance Supply Voltage	[\%]	± 10
Current Consumption	[A]	1.21
Power Consumption	[W]	29
Solenoid Connection		Connector as per EN 175301-803
Wiring Minimum	[mm^{2}]	3×1.5 recommended
Wiring Length Maximum	[m]	50 (164 ft.) recommended

With electrical connections the protective conductor ($\mathrm{PE} \stackrel{\perp}{\Xi}$) must be connected according to the relevant regulations.

D*1FC B/E

D31FC

D91FC

D91FC Flow Characteristics

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

D41FC

D41FC Flow Characteristics

at $\Delta \mathrm{p}=5 \mathrm{Bar}(72.5 \mathrm{PSI}) /$ metering edge

D111FC

D111FC Flow Characteristics
at $\Delta \mathrm{p}=5 \mathrm{Bar}(72.5 \mathrm{PSI}) /$ metering edge

D*1FCR/Z

D31FC

${ }^{1)}$ with 2 tank ports

D91FC

D91FCR/Z Flow Characteristics
at $\Delta \mathrm{p}=5 \mathrm{Bar}(72.5 \mathrm{PSI}) /$ metering edge

D41FC

D41FCR/Z Flow Characteristics

at $\Delta \mathrm{p}=5 \operatorname{Bar}(72.5 \mathrm{PSI}) /$ metering edge

D111FC - Spool Type R/Z on request

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Monitor Switch M12x1 Pin Assignment

1 + Supply 18...42V
2 Output B (normally closed)
3 OV
4 Output A (normally closed)
5 Earth ground

Signal	Output A (pin 4)	Output B (pin 2)
neutral	closed	closed
\square	open	closed
\square	closed	open

The neutral position is monitored. The signal changes after less than 10% of the spool stroke.

Electrical Monitor Switch

Protection Class		IP65 in accordance with EN 60529 (plugged and mounted)
Ambient Temperature	$\left[{ }^{\circ} \mathrm{C}\right]$	$0 \ldots . .70 ;\left(32^{\circ}{ }^{\circ}\right.$...158

Code 0

6 + PE acc. to EN 175201-804

Code 5

$11+\mathrm{PE}$

Code 7

6 + PE acc. to EN 175201-804 + enable

ProPxD Interface Program

The ProPxD software allows quick and easy setting of the digital valve electronics. Individual parameters as well as complete settings can be viewed, changed and saved via the comfortable user interface. Parameter sets saved in the non-volatile memory can be loaded to other valves of the same type or printed out for documentation purposes.

Features

- Simple editing of all parameters.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR} 95$ upwards.
- Communication between PC and electronics via serial interface RS-232.
The valve electronics cannot be connected to a PC with a standard USB cable - this can result in damages of PC and/or valve electronics.
Simple to use interface program. Download free of charge www.parker.com/euro_hcd \rightarrow Services \rightarrow downloads

The parametrizing cable may be ordered under item no. 40982923.

Pilot Flow - Pilot Oil Inlet (Supply) and Outlet (Drain)
O open, closed

Pilot oil			
Inlet	Drain	B	C
internal	external	\bigcirc	\bigcirc
external	external	\bigcirc	
internal	internal	\bigcirc	\bigcirc
external	internal	\bigcirc	\bigcirc

D31FCB/E D31FCR

D41FCB/E D41FCR

D91FCB/E D91FCR

D111FCB/E D111FCR

[^5]

D111FCZ

Dimensions

Proportional Directional Control Valves
Series D＊1FC

Inch equivalents for millimeter dimensions are shown in（＊＊）

D31FC

Regenerative and hybrid function with additional plate H10－1666L，H10－1662，A10－1664，A10－1665L．

Surface Finish	易 $\mathrm{Kit}^{\text {a }}$	用 そ5	5	Seal Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}-\square 0.01 / 100}{1 / / / / / / / 1 / 1 / 7}$	BK385	$\begin{gathered} 4 \times \mathrm{M} 6 \times 40 \\ \text { ISO 4762-12.9 } \end{gathered}$	$\begin{gathered} \text { 13.2 } \mathrm{Nm} \text { (9.7 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	$\begin{gathered} \text { Nitrile: SK-D31FC } \\ \text { Fluorocarbon: SK-D31FC-V } \end{gathered}$

D41FC

Surface Finish	易 Kit	野 \square^{5}	5	Seal Kit
$\frac{\sqrt{R_{\max } 6.3}, \sqrt{\square 0.01 / 100}}{1 / 7 / 1 / 7 / 7 / 7}$	BK320	$\begin{gathered} 2 \times \text { M6x55 } \\ 4 \times \text { M10x60 } \\ \text { ISO 4762-12.9 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 13.2 } \mathrm{Nm}(9.7 \mathrm{lb} .-\mathrm{ft} .) \\ 63 \mathrm{Nm}(46.5 \mathrm{lb} . \mathrm{ft} .) \\ \pm 15 \% \\ \hline \end{gathered}$	Nitrile：SK－D41FC Fluorocarbon：SK－D41FC－V

A01＿Cat2500．indd，ddp，04／19

Dimensions

Proportional Directional Control Valves
Series D＊1FC

Inch equivalents for millimeter dimensions are shown in（＊＊）

D91FC

Surface Finish	邑 Kit	易 5	5	Seal Kit
$\frac{\sqrt{R_{\max } 6.3} \sqrt{\square 0.01 / 100}}{1 / 1 / / 1 / / 1 / 1 / 7}$	BK360	$\begin{gathered} \text { 6x M12x75 } \\ \text { ISO 4762-12.9 } \end{gathered}$	$\begin{gathered} 108 \mathrm{Nm}(79.7 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D91FC Fluorocarbon：SK－D91FC－V

D111FC

Surface Finish	可 Kit	易 㐿	5	Seal Kit
$\frac{\sqrt{R_{\max } 6.3}, \sqrt{\square 0.01 / 100}}{1 / / / / 1 / / / 1 / 1 /}$	BK386	$\begin{gathered} \text { 6x M20x90 } \\ \text { ISO 4762-12.9 } \end{gathered}$	$\begin{gathered} 517 \mathrm{Nm}(381.3 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D111FC Fluorocarbon：SK－D111FC－V

General Description

Series D1FP direct operated control NG6 (CETOP 3) valve features extremely high dynamics combined with maximum flow. It is used for high accuracy in positioning of a hydraulic axis, and for controlling force and velocity.

Driven by the new patented VCD ${ }^{\circledR}$ actuator, the D1FP reaches the frequency response of servovalves.
Compared with solenoid driven valves, the D1FP can
 also be used in applications with pressure drops up to 350 Bar (5075 PSI) across the valve. Because of the high flow capability the D1FP can be a substitute for NG10 valves in some cases.

At power-down the spool moves in a defined position. All common input signals are available.

Features

- Servovalve dynamics: $-3 \mathrm{~dB} / 350 \mathrm{~Hz}$ at $\pm 5 \%$ input signal
- Full flow capacity up to 350 Bar (5075 PSI) pressure drop through the valve
- Maximum tank pressure 350 Bar (5075 PSI) with external drain Y-port
- High flow

- Defined spool positioning in case of loss of electric power supply
- Onboard electronics

[^6]
${ }^{1)}$ On power down the spool moves in a defined position. This cannot be guaranteed in case of single flow path on the control edge $\mathrm{A} \rightarrow$ T resp. $\mathrm{B} \rightarrow$ T with pressure drops above 120 Bar (1740 PSI) or contamination in the hydraulic fluid.
${ }^{2)}$ Approximately 10% opening, only available with zerolap spools and underlap spools.
${ }^{3)}$ Only available with overlap spools.
${ }^{4)}$ Needs to be removed at tank pressure >35 Bar (507.5 PSI).
5) Flow direction $\mathrm{P} \rightarrow \mathrm{A}$ with Pin $\mathrm{D}>\operatorname{Pin} \mathrm{E}$.
${ }^{6}$) Not for flow code M.

Bolt Kit:

BK209
(4) $10-24 \times 1.25$
BK375
(4) M5x30
Weight: $5.0 \mathrm{~kg}(11.0 \mathrm{lbs}$.

Proportional Directional Control Valves
 Series D1FP

Specifications

General		
Design		Direct operated proportional DC valve
Actuation		VCD ${ }^{\text {® }}$ actuator
Size		NG6 / CETOP 3 / NFPA D03
Mounting Interface		DIN 24340 / ISO 4401 / CETOP RP121 / NFPA
Mounting Position		Unrestricted
Ambient Temperature	[${ }^{\text {C }}$]	-20... +50 ; (-4 $\left.{ }^{\circ} \mathrm{F} . .+122^{\circ} \mathrm{F}\right)$
MTTF Value	[years]	75
Vibration Resistance	[g]	10 Sinus $5 \ldots 2000 \mathrm{~Hz}$ acc. IEC 68-2-6 30 Random noise $20 . . .2000 \mathrm{~Hz}$ acc. IEC 68-2-36 15 Shock acc. IEC 68-2-27
Hydraulic		
Maximum Operating Pressure	sure	Ports P, A, B 350 Bar (5075 PSI) Port T max. 35 Bar (508 PSI), port Y max. $35 \mathrm{Bar}(508 \mathrm{PSI})^{1)}$
Fluid		Hydraulic oil as per DIN 51524...51535, other on request
Fluid Temperature	[$\left.{ }^{\circ} \mathrm{C}\right]$	-20...+60; (-4 $\left.{ }^{\circ} \mathrm{F} . . .+140^{\circ} \mathrm{F}\right)$
Viscosity Permitted Recommended $[\mathrm{cSt}]$ $[\mathrm{cSt}]$	$\begin{aligned} & {[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]} \\ & {[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]} \end{aligned}$	
Filtration		ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)
Nominal Flow at $\Delta \mathrm{p}=35$ Bar (508 PSI) per Control Edge ${ }^{2)}$	$\begin{aligned} & {[\text { [LPM] }} \\ & {[\text { LPM }]} \end{aligned}$	3 LPM (0.08 GPM) / 6 LPM (1.6 GPM) / 12 LPM (3.2 GPM) / 25 LPM (6.6 GPM) / 40 LPM (10.6 GPM)
Flow Maximum		90 LPM (23.8 GPM) at $\Delta \mathrm{p}=350 \mathrm{Bar}(5075 \mathrm{PSI})$ over two control edges
Leakage at 100 Bar (1450 PSI)	PSI) $\left.\begin{array}{r}{[\mathrm{ml} /} \\ \mathrm{min}]\end{array}\right]$	<400 (zerolapped spool); <50 (overlapped spool)
Static / Dynamic		
Step Response at 100\% Step ${ }^{3}$	Step ${ }^{3)}$ [ms]	<3.5
Frequency Response $\left(\pm 5 \%\right.$ signal) ${ }^{3}$	$[\mathrm{Hz}]$	350 (amplitude ratio -3 dB), 350 (phase lag -90°)
Hysteresis	[\%]	<0.05
Sensitivity	[\%]	<0.03
Temperature Drift	[\%/K]	<0.025
Electrical		
Duty Ratio	[\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible
Protection Class		IP65 in accordance with EN 60529 (plugged and mounted)
Supply Voltage/Ripple	[V]	DC $22 \ldots . .30$, ripple $<5 \%$ eff., surge free
Current Consumption Maximum	ximum [A]	3.5
Pre-Fusing	[A]	4.0 medium lag
Input Signal Voltage Impedance Current Impedance Current Impedance		10...0...-10, ripple $<0.01 \%$ eff., surge free, $0 . . .+10 V$ P->A 100 20...0...-20, ripple $<0.01 \%$ eff., surge free, $0 \ldots+20 \mathrm{~mA} P$->A 250 $4 . . .12 \ldots 20$, ripple $<0.01 \%$ eff., surge free, $12 \ldots 20 \mathrm{~mA} P$->A $<3.6 \mathrm{~mA}=$ disable, $>3.8 \mathrm{~mA}=$ according to NAMUR NE43 250
Differential Input Maximum Code 0 Code 5 / 7	m [V] [V]	30 for terminal D and E against PE (terminal G) 30 for terminal 4 and 5 against PE (terminal $\stackrel{1}{\bar{I}}$)
Enable Signal (Only Code 5 /7)	5/7) [V]	5...30, Ri $=9 \mathrm{kOhm}$
Diagnostic Signal	[V]	+10...0...-10 / +Ub, rated max. 5 mA
EMC		EN61000-6-2 / EN61000-6-4
Electrical Connection	Code 0 Code 5 Code 7	$\begin{aligned} & \hline 6+\text { PE acc. EN 175201-804 } \\ & 11+\text { PE acc. EN 175201-804 } \\ & 6+\text { PE + Enable } \\ & \hline \end{aligned}$
Wiring Miniimum Code 0 Code 5 Code 7	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {\left[\mathrm{mm}^{2}\right]} \\ & {\left[\mathrm{mm}^{2}\right]} \end{aligned}$	7×1.0 (AWG 18) overall braid shield 12×1.0 (AWG 20) overall braid shield 12×1.0 (AWG 18) overall braid shield
Wiring Length Maximum	[m]	50 (164 ft.)

[^7]A01_Cat2500.indd, ddp, 04/19

Proportional Directional Control Valves
Series D1FP

Functional Limit
at $25 \%, 50 \%, 75 \%$ and 100%

Pressure Gain

Spool Type E01/E50
Flow Curves

Spool Type B60
Flow Curves

Frequency Response
$\pm 5 \%$ Command Signal
$\pm 90 \%$ Command Signal

Code 0

6 + PE acc. to EN 175201-804

11 + PE acc. to EN 175201-804

Note: When replacing another valve, verify Pin C is O V and not wired as an enable.

Code 7

6 + PE + Enable acc. to EN 175201-804

Inch equivalents for millimeter dimensions are shown in（＊＊）

Surface Finish	包 Kit	易 约	5	Seal Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}-\square 0.01 / 100}{1 / / 7 / 1 / 7 / 1 /}$		4x M5x30 DIN 91212.9 4x 10－24x1．25	$\begin{gathered} \hline \text { 7.6 Nm (5.6 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D1FP Fluorocarbon：SK－D1FP－V for HFC Fluid：SK－D1FP－H

General Description

The direct operated control valves D1FP with freely configurable control circuit of the nominal size NG06 (CETOP 03) and D3FP of the nominal size NG10 (CETOP 05) shows extremly high dynamics combined with maximum flow. It is the preferred choice for highest accuracy in positioning of hydraulic axis and controlling of pressure and velocity.

Driven by the patented VCD® actuator the D*FP
 reaches the frequency response of real servovalves. At power-down the spool moves in a defined position. All common input signals are available.

Features

- Freely configurable supervising control circuit
- Analog sensor input
- Onboard electronics
- Real servovalve dynamics $(-3 \mathrm{~dB} / 350 \mathrm{~Hz}$ at $\pm 5 \%$ input signal)
- Maximum tank pressure D1FP: 350 Bar (5076 PSI), D3FP 250 Bar (3626 PSI) with external drain port Y
- Defined spool positioning at power-down - optional (for overlapped spools)

C ϵ

Application example

D1FP

[^8]Catalog MSG14-2550/US
Ordering Information

Proportional Directional Control Valves
Series D*FP*D

Adapter plate for ISO 4401 to ISO 10372 size 04, ordering code HAP04WV06-1661.

Please order connector separately. See Accessories.
Parametrizing cable OBE \rightarrow RS-232, item no. 40982923.

Notes:

${ }^{1)}$ On power down the spool moves in a defined position. This cannot be guaranteed in case of single flow path on the control edge $\mathrm{A} \rightarrow \mathrm{T}$ resp. $\mathrm{B} \rightarrow \mathrm{T}$ with pressure drops above $120 \mathrm{Bar}(1740 \mathrm{PSI}$) or contamination in the hydraulic fluid.
${ }^{2}$) Approximately 10% opening, only zerolapped spools and underlap spools.
${ }^{3)}$ Only for overlapped spools.
${ }^{4)}$ Not for flow code M, 40 LPM (10.6 GPM).
${ }^{5)}$ Plug in the Y -port needs to be removed at tank pressure $>35 \operatorname{Bar}$ (508 PSI).
Please order plugs separately. See Accessories.

Bolt Kit:
BK375
(4) M5x30

Weight:
D1FP*D $5.0 \mathrm{~kg}(11.0 \mathrm{lbs}$.

For regenerative and hybrid function please refer to solutions with sandwich and adapter plates "A10-1664 / A10-1665L / H10-1662 / H10-1666L" in Catalog HY11-3500/UK, chapter 12.

Please order connector separately. See Accessories.
Parametrizing cable OBE -> RS-232, item no. 40982923.

Notes:

1) On power down the spool moves in a defined position. This cannot be guaranteed in case of single flow path on the control edge $\mathrm{A} \rightarrow \mathrm{T}$ resp. $\mathrm{B} \rightarrow \mathrm{T}$ with pressure drops above $120 \mathrm{Bar}(1740 \mathrm{PSI})$ or contamination in the hydraulic fluid.
2) Approximately 10% opening, only zerolapped spools and underlap spools.
3) Only for overlapped spools.
4) Plug in the Y-port needs to be removed at tank pressure >35 Bar (508 PSI).

Bolt Kit:
BK385
(4) M6x40

Weight:
D3FP*D $\quad 6.5 \mathrm{~kg}(14.3 \mathrm{lbs}$.

Catalog MSG14-2550/US
Specifications

Proportional Directional Control Valves Series D*FP*D

${ }^{1)}$ If valves with onboard electronics are used in safety-related parts of control systems, in case the safety function is requested, the valve electronics voltage supply is to be switched off by a suitable switching element with sufficient reliability.
${ }^{\text {2) }}$ For applications with $\mathrm{p}_{\mathrm{T}}>35 \mathrm{Bar}(508 \mathrm{PSI})$ [max. $350 \mathrm{Bar}(5076 \mathrm{PSI})$] the Y-port has to be connected and the plug in the Y -port has to be removed.
3) Flow rate for different $\Delta \mathrm{p}$ per control edge: $\mathrm{Q}_{\mathrm{x}}=\mathrm{Q}_{\text {Nom. }} \cdot \sqrt{\frac{\Delta \mathrm{p}_{\mathrm{x}}}{\Delta \mathrm{p}_{\text {Nom. }}}}$
${ }^{4)}$ Measured with load 100 Bar (1450 PSI) pressure drop/two control edges.
A01_Cat2500.indd, ddp, 04/19

Flow Characteristics

(Overlapped spool set to opening point 23%) at $\Delta \mathrm{p}=35 \mathrm{Bar}$ (508 PSI) per metering edge

Spool Type E01/E50

Pressure Gain

Spool Type B31/B60

Frequency Response

Frequency (Hz)

Flow Characteristics

(Overlapped spool set to opening point 19%) at $\Delta p=35 \operatorname{Bar}$ (508 PSI) per metering edge

Spool Type E50/E55, E01/E02

Pressure Gain

Spool Type B31/B32, B60

Frequency Response

$\pm 5 \%$ command signal $\pm 90 \%$ command signal

Frequency (Hz)

Code 0

Code 7

$\left(\begin{array}{lll}\text { (F) } & \text { (A) } \\ \text { (E) } & \text { (C) } \\ \text { (D) }\end{array}\right.$

[^9]Code 5

Pin Assignment Analog Sensor, M12 Socket

$$
\begin{array}{ll}
1 & \mathrm{U}_{\mathrm{s}} \\
2 & \pm 10 \mathrm{~V} \\
3 & \mathrm{GND} \\
4 & 4 \ldots 20 \mathrm{~mA}+ \\
5 & 4 \ldots 20 \mathrm{~mA}-
\end{array}
$$

Examples Position Control

Current 4... $12 . . .20 \mathrm{~mA}$ contacts at the sensor input

Wiring Diagram Four-Wire

Wiring Diagram Three-Wire

The earth connection is achieved via the shielding.

Wiring Diagram Two-Wire

Voltage $\pm 10 \mathrm{~V}(1 . . .10 \mathrm{~V})$

ProPxD Interface Program

The ProPxD software allows quick and easy setting of the digital valve electronics. Individual parameters as well as complete settings can be viewed, changed and saved via the simple user interface. Parameter sets saved in the non-volatile memory can be loaded to other valves of the same type or printed out for documentation purposes.
Simple to use interface program. Download free of charge www.parker.com/propxd

Features

- Easy editing of all parameters - configuration of the controller
- Storage and loading of customized parameter adjustments
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR}$ XP upwards
- Simple communication between PC and valve electronics via serial interface RS-232
The valve electronics cannot be connected to a PC with a standard USB cable - this can result in damages of PC and/or valve electronics.
The parametrizing cable may be ordered under item no. 40982923.

The parametrizing cable may be ordered under item no. 40982923.

Inch equivalents for millimeter dimensions are shown in（＊＊）

D1FP＊D

Surface Finish	包 Kit	囫㱼	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3} \sqrt{\square 0.01 / 100}}{1 / 1 / 1 / 1 / 1 / 1 / 71}$	BK375	$\begin{gathered} 4 \times \mathrm{M} 5 \times 30 \\ \text { ISO } 4762-12.9 \end{gathered}$	$\begin{gathered} \hline 7.6 \mathrm{Nm}(5.6 \mathrm{lb} . \mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D1FP Fluorocarbon：SK－D1FP－V for HFC Fluid：SK－D1FP－H

Inch equivalents for millimeter dimensions are shown in (**)
D3FP*D

Surface Finish	$\square \mathrm{mit}$		S	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3} \sqrt{\square 0.01 / 100}}{1 / 7 / 1 / 1 / 1 / 1 / 1 /}$	BK385	$\begin{gathered} 4 \times \mathrm{M} 6 \times 40 \\ \text { ISO } 4762-12.9 \end{gathered}$	$\begin{gathered} \hline 13.2 \mathrm{Nm}(9.7 \mathrm{lb} .-\mathrm{ft}) \text {) } \\ \pm 15 \% \end{gathered}$	Nitrile: SK-D3FP Fluorocarbon: SK-D3FP-V for HFC Fluid: SK-D3FP-H

Proportional Directional Control Valves

Series D1FP*ED Explosion Proof

General Description

Series D1FP*ED explosion proof direct operated control valves of the nominal size NG06 (CETOP 03) is technically based on the standard D1FP design and allows the usage in hazardous environments. The flameproof enclosure of the electronics ensures that no potential explosion energy inside the valve can leak out.

The explosion proof class is:

Ex II 2G Ex db IIC T5 and T6 Gb

for use in zone 1 and 2 (conform to ATEX) and IECEx conformity.

The D1FP shows extremly high dynamics combined with maximum flow. It is the preferred choice for highest accuracy in positioning of hydraulic axis and controlling of pressure and velocity.
Driven by the patented VCD ${ }^{\circledR}$ actuator, the D1FP reaches the frequency response of real servovalves. At power-down the spool moves in a defined position. All common input signals are available.

c ϵ

Features

- Real servovalve dynamics (-3 dB / 350 Hz at $\pm 5 \%$ input signal)
- High flow
- Defined spool positioning at power-down - optional P-A/B-T or P-B/A-T or center position (for overlapped spools)
- Onboard electronics

1. WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
A01_Cat2500.indd, ddp, 04/19

Note:

IECEx certified screwed cable glands are not included.
Adapter plate for ISO 4401 to ISO 10372 size 04, ordering code HAP04WV06-1661.

Parametrizing cable OBE $->$ RS-232, item no. 40982923.

1) On power down the spool moves in a defined position. This cannot be guaranteed in case of single flow path on the control edge $A \rightarrow T$ resp. $B \rightarrow T$ with pressure drops above $120 \mathrm{Bar}(1740 \mathrm{PSI})$ or contamination in the hydraulic fluid.
2) Approximately 10% opening, only zerolapped spools and underlap spools.
3) Only for overlapped spools.

Bolt Kit:
BK300 (4) M5x50
Weight:
D1FP*ED $9.3 \mathrm{~kg}(20.5 \mathrm{lbs}$.

Proportional Directional Control Valves

Specifications
Series D1FP*ED Explosion Proof

1) Flow rate for different $\Delta \mathrm{p}$ per control edge: $\mathrm{Q}_{\mathrm{x}}=\mathrm{Q}_{\text {Nom. }} \cdot \sqrt{\frac{\Delta \mathrm{p}_{\mathrm{x}}}{\Delta \mathrm{p}_{\text {Nom. }}}}$
${ }^{\text {2) }}$ Measured with load $100 \mathrm{Bar}(1450 \mathrm{PSI})$ pressure drop/two control edges.

A01_Cat2500.indd, ddp, 04/19

Flow Characteristics

(Overlapped spool set to opening point 23%) at $\Delta \mathrm{p}=35 \mathrm{Bar}$ (508 PSI) per metering edge

Spool Type E01/E50

Pressure Gain

Spool Type B31/B60

Frequency Response

Frequency (Hz)

Functional Limits

On request

Block Diagram of onboard electronics

Pin Adjustment

Connector	Range	Pin	Signal In / Out
A	Supply	A1	PE
		A2	PE
		A3	+Up Power supply (22... 30 V)
		A4	+Us Sensor supply (+Up bridged)
		A5	GND
		A6	GND
		A7	Enable (5... 30 V)
14 pin	Command	A9	Command+
		A11	Command-
	Diagnostic	A8	Diagnostic ($\pm 10 \mathrm{~V}$)
		A10	Diagnostic (4...20mA)
		A12	Valve OK Signal/Pos. Control (0 V, 24 V)
	Reserve	A13	n. c.
		A14	n. c.

Connector	Range	Pin	Signal In / Out		
B	Sensor	$\begin{aligned} & \hline \text { B10 } \\ & \text { B12 } \end{aligned}$	Feedback IN+ ($\pm 10 \mathrm{~V}$) Feedback / Diagnostic GND		
		$\begin{gathered} \hline \text { B9 } \\ \text { B11 } \\ \hline \end{gathered}$	Feedback IN+ (4... 20 mA$)$ Feedback IN+ (4... 20 mA)		
	BUS		ProfiBUS ${ }^{2)}$		EtherCAT
		B1	Data GND	RD-	OUT (blue)
		B2		RD-	IN (blue)
		B3	$\begin{array}{\|l} \text { RxD / TxD-N } \\ \text { (green) } \\ \hline \end{array}$	RD+	OUT (white)
12 pin		B4		RD+	IN (white)
		B5	$\begin{aligned} & \text { RxD / TxD-P } \\ & \text { (red) } \\ & \hline \end{aligned}$	TD-	OUT (orange)
		B6		TD-	IN (orange)
		B7	Power supply plus(P5V)	TD+	OUT (yellow)
		B8		TD+	IN (yellow)

Position of Pin Connectors

[^10]
ProPxD Interface Program

The ProPxD software allows quick and easy setting of the digital valve electronics. Individual parameters as well as complete settings can be viewed, changed and saved via the simple user interface. Parameter sets saved in the non-volatile memory can be loaded to other valves of the same type or printed out for documentation purposes.
Simple to use interface program. Download free of charge www.parker.com/euro_hcd \rightarrow Services \rightarrow downloads

Features

- Easy editing of all parameters - configuration of the controller
- Storage and loading of customized parameter adjustments
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR}$ XP upwards
- Simple communication between PC and valve electronics via serial interface RS-232
The valve electronics cannot be connected to a PC with a standard USB cable - this can result in damages of PC and/or valve electronics.
The parametrizing cable may be ordered under item no. 40982923.

The parametrizing cable may be ordered under item no. 40982923.

Inch equivalents for millimeter dimensions are shown in（＊＊）

D1FP＊ED

Surface Finish	鸟 Kit	國㱼	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3} \sqrt{\square 0.01 / 100}}{1 / 1 / 1 / 1 / 1 / 1 / 7 /}$	BK300	$\begin{gathered} 4 \times \mathrm{M} 5 \times 50 \\ \text { ISO } 4762-12.9 \end{gathered}$	$\begin{gathered} \hline \text { 7.6 } \mathrm{Nm} \text { (5.6 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D1FP Fluorocarbon：SK－D1FP－V for HFC Fluid：SK－D1FP－H

General Description

Series D3FP direct operated control NG10 (CETOP 5) valve features extremely high dynamics combined with maximum flow. It is used for high accuracy positioning of a hydraulic axis, and for controlling force and velocity.

Driven by the new patented VCD ${ }^{\circledR}$ actuator, the D3FP reaches the frequency response of servovalves.

At power-down the spool moves in a defined position. All common input signals are available.

Features

- Extremely high dynamics
- Maximum tank pressure 250 Bar (3600 PSI) with external drain Y-port
- Defined spool positioning at power down
- Onboard electronics
- Spool/Sleeve design

C

©

Underlap approximately -0.5\%		
E55Y	X	100 (26.5)
E55P		50 (13.2)
Overlap 18\%		
$\begin{aligned} & \text { E01Y } \\ & \text { E01P } \end{aligned}$		$\begin{gathered} 100(26.5) \\ 50(13.2) \end{gathered}$
$\begin{aligned} & \text { E02Y } \\ & \text { E02P } \end{aligned}$		$\begin{gathered} 100(26.5) \\ 50(13.2) \end{gathered}$
$\begin{aligned} & \text { B31Y } \\ & \text { B31P } \end{aligned}$		$\begin{gathered} 100 / 50(26.5 / 13.2) \\ 50 / 25(13.2 / 6.6) \end{gathered}$
$\begin{aligned} & \text { B32Y } \\ & \text { B32P } \end{aligned}$		$\begin{gathered} 100 / 50(26.5 / 13.2) \\ 50 / 25(13.2 / 6.6) \end{gathered}$

Bolt Kit:
$\begin{array}{lll}\text { BK98 } & \text { (4) } 1 / 4-20 \times 1.62 \\ \text { BK385 } & \text { (4) M6x40 }\end{array}$
(4) M6x40

Weight: $\quad 6.5 \mathrm{~kg}$ (14.3 lbs.)

Please order plugs separately. See Accessories.

Proportional Directional Control Valves
 Series D3FP

Specifications

General	
Design	Direct operated proportional DC valve
Actuation	VCD ${ }^{\circledR}$ actuator
Size	NG10 / CETOP 5 / NFPA D05
Mounting Interface	DIN 24340 / ISO 4401 / CETOP RP121 / NFPA
Mounting Position	Unrestricted
Ambient Temperature [${ }^{\circ} \mathrm{C}$]	$-20 \ldots+50 ;\left(-4^{\circ} \mathrm{F} . . .+122^{\circ} \mathrm{F}\right)$
MTTF ${ }_{\text {D }}$ Value [years]	75
Vibration Resistance [g]	10 Sinus 5 ... 2000 Hz acc. IEC 68-2-6 30 Random noise $20 . . .2000 \mathrm{~Hz}$ acc. IEC 68-2-36 15 Shock acc. IEC 68-2-27
Hydraulic	
Maximum Operating Pressure	Ports P, A, B 350 Bar (5075 PSI) Port T max. 250 Bar (3600 PSI), port Y max. 35 Bar (508 PSI) ${ }^{1)}$
Fluid	Hydraulic oil as per DIN 51524...51535, other on request
Fluid Temperature [${ }^{\circ} \mathrm{C}$]	-20...+60; (-4F...+140 ${ }^{\circ} \mathrm{F}$)
Viscosity Permitted Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	20... 380 (93... 1761 SSU) $30 . .80$ (139... 371 SSU)
Filtration	ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)
Nominal Flow at $\Delta \mathrm{p}=35 \mathrm{Bar}$ (508 PSI) per Control Edge ${ }^{2)}$	50 LPM (13.2 GPM) / 100 LPM (26.5 GPM)
Flow Maximum	150 LPM (39.7 GPM)
Leakage at $100 \mathrm{Bar}(1450 \mathrm{PSI})$ $[\mathrm{ml} /$ $\mathrm{min}]$	<400 (zerolap spool); <50 (overlap spool)
Static / Dynamic	
Step Response at 100\% Step ${ }^{3)}$ [ms]	<6
Frequency Response ($\pm 5 \%$ signal) ${ }^{3)}$	350 (amplitude ratio -3dB), 350 (phase lag -90 ${ }^{\circ}$)
Hysteresis [\%]	<0.05
Sensitivity [\%]	<0.03
Temperature Drift [\%/K]	<0.025
Electrical	
Duty Ratio [\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible
Protection Class	IP65 in accordance with EN 60529 (plugged and mounted)
Supply Voltage/Ripple [V]	DC $22 \ldots 30$, ripple $<5 \%$ eff., surge free
Current Consumption Maximum [A]	3.5
Pre-Fusing [A]	4.0 medium lag
Input Signal Voltage $[\mathrm{V}]$ lmpedance $[\mathrm{kOhm}]$ Current $[\mathrm{mA}]$ Impedance $[\mathrm{Ohm}]$ Current $[\mathrm{mA}]$ Impedance $[\mathrm{Ohm}]$	10...0...-10, ripple $<0.01 \%$ eff., surge free, $0 . . .+10 \mathrm{~V}$ P->A 100 $20 \ldots 0 \ldots-20$, ripple $<0.01 \%$ eff., surge free, $0 \ldots+20 \mathrm{~mA} P->A$ 250 $4 \ldots 12 \ldots 20$, ripple $<0.01 \%$ eff., surge free, 12...20mA P->A $<3.6 \mathrm{~mA}=$ disable, $>3.8 \mathrm{~mA}=$ according to NAMUR NE43 250
Differential Input Maximum Code 0 Code 5 / 7 Voltage References:	30 for terminal D and E against PE (terminal G) 30 for terminal 4 and 5 against PE (terminal $\stackrel{\perp}{ \pm}$) Not a powered output Only for 10 K Ohm pots
Enable Signal (Only Code 5 / 7) [V]	5...30, Ri $=9 \mathrm{kOhm}$
Diagnostic Signal [V]	+10...0...-10 / +Ub, rated max. 5mA
EMC	EN61000-6-2 / EN61000-6-4
Electrical Connection Code 0 Code 5 Code 7	$6+$ PE acc. EN 175201-804 $11+$ PE acc. EN 175201-804 6 + PE + Enable
Wiring Minimum Code 0 $\left[\mathrm{mm}^{2}\right]$ Code 5 $\left[\mathrm{mm}^{2}\right]$ Code 7 $\left[\mathrm{mm}^{2}\right]$	7×1.0 (AWG 18) overall braid shield 12×1.0 (AWG 20) overall braid shield 12×1.0 (AWG 18) overall braid shield
Wiring Length Maximum [m]	50 (164 ft.)

${ }^{11}$ For applications with $\mathrm{pT}>35 \operatorname{Bar}(508 \mathrm{PSI})$ the Y -port plug must be removed and the Y -port connected to tank.
2) Flow rate for different $\Delta \mathrm{p}$ per control edge: $\mathrm{Q}_{\mathrm{x}}=\mathrm{Q}_{\text {Nom. }} \cdot \sqrt{\frac{\Delta \mathrm{p}_{x}}{\Delta \mathrm{p}_{\text {Nom. }}}}$ $\begin{aligned} & \Delta \mathrm{P}_{\text {Nom. }} \cdot\left(\frac{\mathrm{Qx}}{\mathrm{Q}_{\text {Nom. }}}\right)^{2}=\Delta \mathrm{Px}\end{aligned}$

Functional Limit

at $25 \%, 50 \%, 75 \%$ and 100%

$\Delta \mathrm{P}_{\mathrm{P}-\mathrm{T}}$

Functional Limit
at $25 \%, 50 \%, 75 \%$ and 100%
Command Signal

$\Delta \mathbf{P P}_{\mathrm{P}-\mathrm{T}}$

Flow Curves

Pressure Gain

Frequency Response

Code 0

6 + PE acc. to EN 175201-804

Code 5

11 + PE acc. to EN 175201-804

Note: When replacing another valve, verify Pin C is 0 V and not wired as an enable.
Code 7
6 + PE + Enable acc. to EN 175201-804

Abstract

Inch equivalents for millimeter dimensions are shown in（＊＊）

Surface Finish	易 Kit	易 岛	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}-\square 0_{0.01 / 100}}{1 / 1 / 1 / 1 / 1 / 1 /}$	$\begin{gathered} \text { BK385 } \\ \text { BK98 } \\ \hline \end{gathered}$	4x M6x40 DIN 91212.9 4x 1／4－20x1．62	$\begin{gathered} \text { 13.2 } \mathrm{Nm}(9.7 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D3FP Fluorocarbon：SK－D3FP－V for HFC Fluid：SK－D3FP－H

General Description

Series D30FP pilot operated control valve closes the gap between the direct operated D3FP valves and the conventional pilot operated D31FP valves.

Providing high flow capacity and practically no flow limits like D31FP in the envelope size of the D3FP.

The valve works with the hydraulic follower principle, with a moving sleeve as main spool.

Features

- Pilot operated with hydraulic follower sleeve
- No flow limit up to 350 bar through the valve
- Defined spool positioning at power down

C

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
A01_Cat2500.indd, ddp, 04/19

Bolt Kit:
BK98 (4) 1/4-20x1.62
BK385
(4) $M 6 \times 40$

Weight: $\quad 6.5 \mathrm{~kg}(14.3 \mathrm{lbs}$.

Proportional Directional Control Valves
 Series D30FP

Specifications

1) Flow rate for different Δp per control edge: $Q_{x}=Q_{\text {Nom. }} \cdot \sqrt{\frac{\Delta p_{x}}{\Delta p_{2}}} \quad$ 2) Measured with load (100 Bar (1450 PSI) $\frac{\mathrm{p}_{\mathrm{Nom}}}{} \quad$ pressure drop/two control edges)

A01_Cat2500.indd, ddp, 04/19

Flow

Pressure Gain

Frequency Response

Code 0

6 + PE acc. to EN 175201-804

Proportional Directional Control Valves
Series D30FP

Code 5

11 + PE acc. to EN 175201-804

Code 7

6 + PE + Enable acc. to EN 175201-804

Inch equivalents for millimeter dimensions are shown in（＊＊）

Surface Finish	可 Kit	冒 发	$\stackrel{?}{?}$	Seal \bigcirc Kit
$\frac{\sqrt{R_{\max } 6.3} \sqrt{\square 0.01 / 100}}{1 / / / / / / / / / 1 / 7}$	$\begin{gathered} \hline \text { BK385 } \\ \text { BK98 } \\ \hline \end{gathered}$	4x M6x40 DIN 91212.9 4x 1／4－20x1．62	$\begin{gathered} \text { 13.2 } \mathrm{Nm} \text { (9.7 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D3FP Fluorocarbon：SK－D3FP－V

General Description

Series D*1FP pilot operated servo proportional valves transfer the advantages of the Parker patented Voice Coil Drive (VCD ${ }^{\ominus}$) to larger frame sizes for high flow rates. The high dynamic / high precision drive of the pilot valve allows the optimum control of the main spool and results in servo performance of the complete valve.
Series D*1FP is available in 5 sizes:
D31FP NG10 (CETOP 5)
D41FP NG16 (CETOP 7)
D91FP NG25 (CETOP 8)
for port diameter up to 32 mm (1.26 in.)
D111FP NG32 (CETOP 10)
The power down mode works with a safe 4th position of the D1FP pilot valve. This ensures that the main stage is hydraulically balanced at power down and allows the main spool spring to center (for overlapped spools), or approximately 10% spring offset to spool position A or B (for zerolap spools).

The innovative integrated regenerative function into the A-line (optional) allows new energy saving circuits for differential cylinders. The hybrid version can be switched between regenerative mode and standard mode at any time.

C ϵ
D41FPE52 (Standard)

D41FP Standard

NEW: A-Regeneration D*1FPR

Features

- High dynamics
- High flow
- Defined spool positioning at power-down - optional P-A/B-T or P-B/A-T or center position (for overlapped spools)
- Onboard electronics
- Closed loop position - controlled pilot valve and main stage
- NEW: Energy saving A-Regeneration
- NEW: Switchable hybrid version

[^11]Technical Information

Proportional Directional Control Valves
Series D*1FP

D*1FBR and D*1FBZ

Regenerative Valve D*1FBR

Hybrid Valve D*1FBZ

D*1FPR (Regenerative Valve)
Cylinder extending

D*1FPZ (Hybrid Valve)
Cylinder extending regenerative mode (high speed)

Cylinder extending standard mode (high force)

Flow Rate in \% of Nominal Flow

Size	Spool	Port						
		A-T	P-A	P-B	B-A (R-Valve)	B-A (Hybrid)	B-T (Hybrid)	
D41FPR/Z	$31 / 32 / 61$	100%	50%	100%	50%	40%	20%	
D91FPR/Z	$31 / 32 / 61$	100%	50%	100%	50%	50%	25%	
D111FPR/Z	$31 / 32 / 61$	on request						

Flow LPM (GPM)				
Code	at $\Delta \mathrm{p}=\mathbf{5}$ Bar (72.5 PSI) per metering edge D41			
	D31	D91	D111	
D	90			
	(23.8)			-
E	120	-	-	-
F	(32)	-	200	-
H	-	-	450	-
		-	(119)	-
L	-	-	-	1000

${ }^{2}$) Approx. 10\% opening, only zerolap spools.
${ }^{3}$) Only overlap spools.

Please order plugs separately. See Accessories.

Catalog MSG14-2550/US
Specifications

Proportional Directional Control Valves Series D*1FP

${ }^{\text {1) }}$ Flow rate for different $\Delta \mathrm{p}$ per control edge: $\mathrm{Q}_{\mathrm{x}}=\mathrm{Q}_{\text {Nom. }} \cdot \sqrt{\frac{\Delta \mathrm{p}_{\mathrm{x}}}{\Delta \mathrm{p}_{\text {Nom }}}}$
A01_Cat2500.indd, ddp, 04/19
2) Measured with load 210 Bar (3045 PSI)
pressure drop; two control edges

Proportional Directional Control Valves
Series D*1FP

Frequency Response

D31FP Frequency Response
$\pm 5 \% / \pm 25 \% / \pm 90 \%$ Command Signal
Dynamics at 210 Bar (3045 PSI) Pilot Supply Pressure

D91FP Frequency Response
$\pm 5 \% / \pm 25 \% / \pm 90 \%$ Command Signal Dynamics at 210 Bar (3045 PSI) Pilot Supply Pressure

D*1FPB/E Flow

D31FP Flow Characteristics
at $\Delta \mathrm{p}=5 \mathrm{Bar}(72.5 \mathrm{PSI}) /$ metering edge

D41FP Frequency Response $\pm 5 \% / \pm 25 \% / \pm 90 \%$ Command Signal
Dynamics at 210 Bar (3045 PSI) Pilot Supply Pressure

D111FP Frequency Response
$\pm 5 \% / \pm 25 \% / \pm 90 \%$ Command Signal Dynamics at 210 Bar (3045 PSI) Pilot Supply Pressure

Frequency (Hz)

D41FP Flow Characteristics at $\Delta \mathrm{p}=5 \operatorname{Bar}(72.5 \mathrm{PSI}) /$ metering edge

Proportional Directional Control Valves Series D*1FP

D*1FPB/E Flow

D*1FPR/Z Flow

D31FPR Flow Characteristics
at $\Delta \mathrm{p}=5 \operatorname{Bar}(72.5 \mathrm{PSI}) /$ metering edge

${ }^{1)}$ with 2 tank ports

D91FPR/Z Flow Characteristics
at $\Delta \mathrm{p}=5 \mathrm{Bar}(72.5 \mathrm{PSI}) /$ metering edge

D111FP Flow Characteristics
at $\Delta \mathrm{p}=5 \operatorname{Bar}(72.5 \mathrm{PSI}) /$ metering edge

D111FP R/Z *

Spool Type R/Z* on request

Detail:
 Standard, Regenerative and Hybrid Flow Curves

Electrical Specifications Hybrid Option

Duty Ratio		100\%		
Protection Class		IP 65 in accordance with EN 60529 (with correctly mounted plug-in connector)		
		D41	D91	D111
Supply Voltage	[V]	24	24	24
Tolernace Supply Voltage	[\%]	± 10	± 10	± 10
Current Consumption	[A]	1.21	0.96	1.29
Power Consumption	[W]	29	23	31
Solenoid Connection		Connector as per EN 175301-803		
Wiring Minimum	[mm^{2}]	3×1.5 recommended		
Wiring Length Maximum	[m]	50 (164 ft.) recommended		

Code 0

6 + PE acc. EN 175201-804

Code 5

11 + PE acc. EN 175201-804

Code 7
6 + PE acc. EN 175201-804 + Enable

Pilot Flow - Pilot Oil Inlet (Supply) and Outlet (Drain)
Open, closed

Pilot oil			
Inlet	Drain	B	C
internal	external	\bigcirc	
external	external		\bigcirc
internal	internal	\bigcirc	\bigcirc
external	internal	\bigcirc	\bigcirc

D31FPB/E

D91FPB/E

D91FPR

Inch equivalents for millimeter dimensions are shown in（＊＊）
D31FP

Surface Finish		目 级	Sp	Seal Kit
$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3}-\square 0.01 / 100}{1 / / / 1 / 7 / 1 / 7}$	$\begin{gathered} \mathrm{BK} 385 \\ \text { BK98 } \end{gathered}$	$\begin{gathered} 4 \times \text { M6x40 } \\ \text { DIN } 91212.9 \\ 4 \times 1 / 4-20 \times 1.62 \end{gathered}$	$\begin{gathered} \hline \text { 13.2 Nm (9.7 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D31FP Fluorocarbon：SK－D31FP－V

D41FP

Surface Finish	$\square \mathrm{mit}$	甾 氾	5	Seal \bigcirc Kit
$\frac{\sqrt{R_{\max } 6.3}+\square 0.01 / 100}{1 / / / / 1 / / 1 / 7 /}$	$\begin{aligned} & \text { BK320 } \\ & \text { BK160 } \end{aligned}$	$2 \times$ M6x55 $4 \times$ M10x60 DIN 91212.9 $4 \times 3 / 8-16 \times 2.5$ $2 \times 1 / 4-20 \times 2.5$	$\begin{gathered} \text { 13.2 Nm (9.7 lb.-ft.) } \\ 63 \mathrm{Nm}(46.5 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D41FP Fluorocarbon：SK－D41FP－V

A01＿Cat2500．indd，ddp，04／19
A133

Inch equivalents for millimeter dimensions are shown in（＊＊）

D91FP

Surface Finish	$\square \mathrm{Oit}$	目 ${ }^{\text {c }}$	5	Seal Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3} \sqrt{\square 0.01 / 100}}{1 / 1 / 1 / 1 / 1 / 1 / 7}$	$\begin{aligned} & \hline \text { BK360 } \\ & \text { BK228 } \end{aligned}$	6x M12x75 DIN 91212.9 $6 \times 1 / 2-13 \times 3.0$	$\begin{gathered} 108 \mathrm{Nm}(79.7 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D91FP Fluorocarbon：SK－D91FP－V

D111FP

Surface Finish	官 Kit	凩 级	Sp	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3} \sqrt{\square 0.01 / 100}}{1 / 1 / 1 / 7 / 1 / 7}$	$\begin{aligned} & \text { BK386 } \\ & \text { BK150 } \end{aligned}$	$6 \times$ M20x90 DIN 91212.9 $6 \times 3 / 4-10 \times 3.5$	$\begin{gathered} 517 \mathrm{Nm}(373.9 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	Nitrile：SK－D111FP Fluorocarbon：SK－D111FP－V

RFI/EMC Immunity for Valves with Integrated Electronics

Conformance to the CE RFI/EMC susceptibility and emissions regulations require valves with integrated electronics be properly wired and grounded. The wiring diagram below suggests proper practices, and should be used as a guide for wiring any new application. In some retrofit applications it may be necessary to significantly alter an existing wiring layout and grounding methods to achieve the desired RFI/ EMC immunity and avoid ground loops. Note that an improperly wired application can render a system unusable.
Valves should be wired to the user control cabinet by shielded cable where the shield is grounded at both ends. These ground points must be very low impedance earth grounds, and proper wiring practices are required to avoid system ground loops. In some applications it may be necessary to install a low impedance ground strap between the valve or manifold and earth to achieve a proper ground.

Note that when assembling cable/connector assemblies, the shield must be in electrical contact with the connector shell to complete the shield circuit through the valve mating receptacle. (Refer to the Accessories section of this catalog for pre-assembled 'EHC' cable assemblies)

To minimize the exposure to RFI/EMC radiation, electronic equipment should be isolated from sources of high-energy electromagnetic radiation such as cables carrying high currents, radio transmitters, electrical load control centers and contactors.

Note: PE on Functional Block Diagrams refers to "Potential Earth".

Size NG6 (NFPA/ISO/CETOP 3)

mounting pattern per DIN24340-A6, ISO 4401-03-03-0-05

Size NG10 (NFPA/ISO/CETOP 5HE)

mounting pattern per DIN 24340-A6, ISO 4401-05-05-0-05

* Dimension tolerance $\pm 0.1 \mathrm{~mm}$ (0.004 in.) All other dimensions $\pm 0.2 \mathrm{~mm}$ (0.008 in .)
** Port not used with valves in this catalog
*** Ports only used for pilot operated valves
A01_Cat2500.indd, ddp, 04/19

Size NG16 (NFPA/ISO/CETOP 7)
mounting pattern per DIN 24340-A6, ISO 4401-07-07-0-05

Size NG25 (NFPA/ISO/CETOP 8)

mounting pattern per DIN 24340-A6,
ISO 4401-08-08-0-05

* Dimension tolerance $\pm 0.1 \mathrm{~mm}$ (0.004 in .)

All other dimensions $\pm 0.2 \mathrm{~mm}$ (0.008 in.)
** Port not used with valves in this catalog

Inch equivalents for millimeter dimensions are shown in (**)

Size NG32 (NFPA/ISO/CETOP 10)

mounting pattern per DIN 24340-A6,
ISO 4401-10-09-0-05

* Dimension tolerance $\pm 0.1 \mathrm{~mm}$ (0.004 in .)

All other dimensions $\pm 0.2 \mathrm{~mm}$ (0.008 in .)

Contents

Series	Description	Direct Operated	Pilot Operated	Flange Mount	Threaded Body	Page
	[size: NG] [size: ISO/CETOP]	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	$\left\|\begin{array}{cccc} 6 & 10 & 25 & 32 \\ 3 & 5 & 8 & 10 \end{array}\right\|$	$\begin{array}{ll} & \text { Inch } \\ 3 / 4 & 1^{1 / 4} \\ \hline 1^{1 / 2} \end{array}$	$\begin{aligned} & \text { Inch } \\ & 1 / 2^{3 / 4} \quad 11^{1 / 4} \end{aligned}$	
RE06M*W	Prop. Press. Relief Valves Offboard	-				B2
RE06M*T	Prop. Press. Relief Valves Onboard	-				B2
R4V, R6V	Prop. Press. Relief Valves Offboard (Replaces Series RE*W)	PHAS	$0^{\bullet} \bullet^{\bullet}{ }^{\text {• }}$			B12
R4V, R6V	Prop. Press. Relief Valves Onboard (Replaces Series RE*T)	PHAS	$\bullet \cdot$			B21
R4V*P2	Prop. Press. Relief Valves In-line Mounted				-•••	B32
R5V*P2	Prop. Press. Relief Valves Flange Mounted			-		B37
RPDM2	Prop. Press. Relief Valves	-				B43
VBY*K	Prop. Press. Relief/Sequence Valves		- -			B44
VMY*K	Prop. Press. Reducing/Relieving Valves		- -			B51
D1FV	Prop. Press. Reducing Valves Offboard	-				B58
D1FV OBE	Prop. Press. Reducing Valves Onboard	-				B58
R4R*P2	Prop. Press. Reducing Valves Subplate Mounted		- - -			B66
R4R*P2	Prop. Press. Reducing Valves In-line Mounted				- •••	B71
PRPM	Prop. Press. Reducing Valves		-			B76
DUR*L06	Prop. Flow Control Valves		-			B81
F5C	Proportional Throttle Valves Flange Mounted			- •		B86
R5P	Pressure Compensator Valves Direct Operated, SAE Flange			- •		B90
LCM	Pressure Compensator Valves		- -			B97

Catalog MSG14-2550/US
Technical Information

Proportional Pressure Relief Valves
Series RE06M*W (Offboard Electronics)

General Description

Series RE06M*W proportional relief valves are direct operated proportional valves typically used as remote control valves for flow rates of below 3 LPM (0.8 GPM).

Function

When the pressure in port P or A exceeds the pressure setting at the solenoid, the cone opens to port T and limits the pressure in port P to the adjusted level.

The optimum performance can be achieved in combination with the digital amplifier module PCD00A-400.

Features

- Direct operated by proportional solenoid
- Very low pressure adjustment of $p_{\text {min }}$
- Two pressure ports, A and P
- Subplate mounting according to ISO 6264

- Four pressure ranges available

Specifications

General	
Nominal Size	DIN NG6 / CETOP 3 / NFPA D03
Interface	Subplate mounting according to ISO 6264
Mounting Position	as desired, horizontal mounting prefered
Ambient Temperature [${ }^{\circ} \mathrm{C}$]	$-20 \ldots+70\left(-4^{\circ} \mathrm{F} \ldots+158^{\circ} \mathrm{F}\right)$
MTTF $_{\text {D }}$ value [years]	150
Hydraulic	
Maximum Operating Pressure	Ports P and A up to 350 (5075 PSI); port T 30 Bar (435 PSI)
Pressure Range	105 Bar (1523 PSI), 175 Bar (2538 PSI), 250 Bar (3625 PSI), 350 (5075 PSI)
Nominal Flow [$1 / \mathrm{min}$]	See p/Q curves
Fluid	Hydraulic oil as per DIN 51524...51535, other on request
Viscosity, Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	$\begin{array}{\|l\|} \hline 30 \ldots 80(139 \ldots 371 \text { SSU) } \\ 12 \ldots 380 \text { (56 ... 1761SSU) } \end{array}$
Fluid Temperature [${ }^{\circ} \mathrm{C}$]	$-20 \ldots+60 ;\left(-4^{\circ} \mathrm{F} . . .+140^{\circ} \mathrm{F}\right)$
Filtration	ISO 4406 (1999), 18/16/13 (acc. NAS 1638: 7)
Linearity [\%]	± 2.8
Repeatability [\%]	< ± 1
Hysteresis [\%]	± 1.5 of $p_{\text {max }}$
Electrical	
Duty Ratio [\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}$ ($302^{\circ} \mathrm{F}$) possible
Protection Class	IP 65 in accordance with EN 60529 (plugged and mounted)
Nominal Voltage [V]	12 (2.3 A max. current), 16 (1.3 A max. current)
Coil Resistance [Ohm]	$\begin{aligned} & 4 \text { at } 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)=\mathrm{K} \text { Coil } \\ & 11.4-12 \text { for } \mathrm{X} \text { Coil } \end{aligned}$
Solenoid Connection	Connector as per DIN 43650
Power Amplifier, Recommended	PCD00A-400

©
WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
B01 Cat2550.indd, ddp, 04/19

Ordering Information

Weight: 1.8 kg (4.0 lbs.)

Use with "PCD" Series Driver cards
** Order if currently using "ED" card

Not required when ordering.

Code Description Socket Connector W DIN 43650 without plug

Please order plug separately. See Accessories.

Bolt Kit	Qty	Size
BK209	4	$10-24 \times 1.25$ "
BK375	4	M5 $\times 30 \mathrm{~mm}$

Performance Curves

p/Q Curves

Pressure Stage 105 Bar

Pressure Stage 350 Bar

Proportional Pressure Relief Valves Series RE06M*W (Offboard Electronics)

$\mathrm{p}_{\text {min }}$ /Q Curves

Pressure Stage 105 Bar
B

$\mathrm{p}_{\text {set-voltage }}$ Curves
Pressure Stage 105 Bar

Pressure Stage 350 Bar

Pressure Stage 350 Bar

Inch equivalents for millimeter dimensions are shown in (**)

Surface Finish	Bolt Kit	国 ξ^{5}		Seal \bigcirc Kit	
				Nitrile	Fluorocarbon
$\frac{\sqrt{R_{\text {max }} 6.3} \sqrt{\square 0.01 / 100}}{1 / 7 / 1 / 1 / 1 / 1 / 7}$	$\begin{aligned} & \text { BK375 } \\ & \text { BK209 } \end{aligned}$	4x M5x30 DIN 91212.9 $4 \times 10-24 \times 1.25$	$\begin{gathered} \text { 7.6 } \mathrm{Nm} \text { (5.6 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	SK-RE06MWN	SK-RE06MWV

Mounting Pattern ISO 6264-03-04-*-97

Inch equivalents for millimeter dimensions are shown in (**)

Body width

General Description

Series RE06*T (NG6) proportional pressure relief valves are direct operated proportional solenoid valves with integral control electronics.
The digital onboard electronic is situated in a robust metal housing and can be used in rough environments. The nominal values of the valves are factory set. Additionally the ProPxD software permits the editing of all parameters. The software is also used for the digital electronic modules. The cable for connection to a serial RS232 interface is available as accessory.

The electrical connection is available in 2 options: Code F:6 + PE central connection +/- 10V command signal (preset)
+10 V reference voltage output
Code R: $\quad 6+$ PE central connection
$4 . . .20 \mathrm{~mA}$ command signal (preset)

Function

When the pressure in port P or A exceeds the pressure setting at the solenoid, the cone opens to port T and limits the inlet pressure to the adjusted level.

The pressure adjustment is effected by applying current to the solenoid. The control signal is modulated to the solenoid current by the electronics.

Features

- Direct operated pressure relief valve
- Onboard electronics
- Very low pressure adjustment of $p_{\text {min. }}$
- Subplate mounting acc. to ISO 6264
- 6 pressure ranges
- 2 pressure inlet ports, A and P

Ordering Information

Catalog MSG14-2550/US
Specifications

Proportional Pressure Relief Valves
Series RE06M*T (Onboard Electronics)

General	
Size	DIN NG6 / CETOP 3 / NFPA D03
Interface	Subplate mounting according to ISO 6264
Mounting Position	as desired, horizontal mounting prefered
Ambient Temperature [${ }^{\circ} \mathrm{C}$]	$-20 \ldots+60 ;\left(-{ }^{\circ} \mathrm{F} \ldots+140^{\circ} \mathrm{F}\right)$
MTTF $_{\text {D }}$ value [years]	75
Vibration Strength [g]	10 sinus $5 \ldots 2000 \mathrm{~Hz}$ acc. to IEC 68-2-6 30 noise $20 . . .2000 \mathrm{~Hz}$ acc. to IEC 68-2-36 15 shock acc. to IEC 68-2-27
Hydraulic	
Maximum Operating Pressure	Ports A and P 350 Bar (5075 PSI), Port T 30 Bar (435 PSI)
Pressure Range	50 Bar (725 PSI), 105 Bar (1523 PSI), 175 Bar (2538 PSI), 210 Bar (3045 PSI), 250 Bar (3625 PSI), 350 (5075 PSI)
Nominal Flow	See p/Q curves
Fluid	Hydraulic oil according to DIN 51524...51535, other on request
Viscosity Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ Permitted $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	$\begin{aligned} & 30 \ldots 80(139 \ldots 371 \text { SSU }) \\ & 12 \ldots 38 \text { (56 ... } 1761 \text { SSU) } \\ & \hline \end{aligned}$
Fluid Temperature [$\left.{ }^{\circ} \mathrm{C}\right]$	$-20 \ldots+60 ;\left(-{ }^{\circ} \mathrm{F} \ldots+140^{\circ} \mathrm{F}\right)$
Filtration	ISO 4406 (1999), 18/16/13 (acc. NAS 1638: 7)
Linearity [\%]	See curve
Repeatability [\%]	$< \pm 1$
Hysteresis [\%]	± 1.5 of $p_{\text {max }}$
Electrical	
Duty Ratio [\%]	100 ED ; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible
Supply Voltage [VDC]	18...30, ripple < 5% eff., surge free
Current Consumption Maximum [A]	2.0
Pre-fusing [A]	2.5 medium lag
Potentiometer Supply [V]	+10 / $\pm 5 \%$ max. 10 mA
Command Signal [V] Code F Voltage [mA] Code R Current	$0 . .+10$, ripple $<0.01 \%$ eff., surge free, $\mathrm{Ri}=100 \mathrm{kOhm}$ $4 . .20$, ripple <0.01 \% eff., surge free, Ri $=200$ Ohm $<3.6 \mathrm{~mA}=$ enable off, $>3.8 \mathrm{~mA}=$ enable on (acc. NAMUR NE43)
Differential Input Voltage Max. [V] $[\mathrm{V}]$	30 for terminal D and E against PE (terminal G) 11 for terminal D and E against OV (terminal B)
Adjustment Ranges Minimum Current $[\%]$ Maximum Current $[\%]$ Ramp [s]	$\begin{aligned} & 0 \ldots . .50 \\ & 50 \ldots . .100 \\ & 0 \ldots . .32 .5 \end{aligned}$
Interface	RS 232, parametrizing connection 5pole
EMC	EN 61000-6-2, EN 61000-6-4
Central Connection	6 + PE acc. EN 175201-804
Cable Specification [mm²]	7×1.0 (AWG 18) overall braid shield
Cable Length Maximum [m]	50 (164 ft.)

Command/Pressure Curve

$\mathbf{p}_{\text {min }} / \mathbf{Q}$ Curves

P/Q Curves

Code F

6 + PE acc. EN 175201-804

Code R

6 + PE acc. EN 175201-804

Technical Information

Proportional Pressure Relief Valves
Series RE06M*T (Onboard Electronics)

ProPxD Interface Program

The ProPxD software allows quick and easy setting of the digital valve electronics. Individual parameters as well as complete settings can be viewed, changed and saved via the comfortable user interface. Parameter sets saved in the non-volatile memory can be loaded to other valves of the same type or printed out for documentation purposes.

Features

- Simple editing of all parameters
- Storage and loading of optimized parameter adjustments
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR} 95$ upwards
- Communication between PC and electronics via serial interface RS-232
The valve electronics cannot be connected to a PC with a standard USB cable - this can result in damages of PC and/or valve electronics.
Simple to use interface program. Download free of charge www.parker.com/propxd

The parametrizing cable may be ordered under item no. 40982923.

Inch equivalents for millimeter dimensions are shown in (**)

(C) $-\square$

Surface Finish	Bolt Kit	$\text { 甾 } \frac{5}{5}$	$\xrightarrow{\sim}$	Seal \bigcirc Kit	
				Nitrile	Fluorocarbon
$\begin{array}{ll} \hline \sqrt{R_{\text {max }} 6.3},-\square \mid 0.01 / 100 \\ \hline / / / / / / / / / / / / \end{array}$	$\begin{aligned} & \text { BK375 } \\ & \text { BK209 } \end{aligned}$	$\begin{gathered} 4 \times \text { M } 5 \times 30 \operatorname{DIN} 91212.9 \\ 4 \times 10-24 \times 1.25 \end{gathered}$	$\begin{gathered} \text { 7.6 Nm (5.6 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	SK-RE06MTN	SK-RE06MTV

Mounting Pattern ISO 6264-03-04-*-97

Inch equivalents for millimeter dimensions are shown in (**)

General Description

Series R4V and R6V proportional pressure relief valves for external electronics feature a proportionally adjusted pilot stage which controls a seated type main stage. The valves are equipped with a mechanical maximum pressure stage (optional for R6V).
The optimum performance can be achieved in combination with the digital amplifier module PCDOOA-400.

Features

- Pilot operated with proportional solenoid
- Continuous adjustment by proportional solenoid
- 3 pressure ranges
- Optional mechanical maximum pressure adjustment
- 2 interfaces

R4V Subplate ISO 6264 (DIN 24340 Form D) R6V Subplate ISO 6264 (DIN 24340 Form E)

R4V

R4V

R6V

 cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
B01_Cat2550.indd, ddp, 04/19

Specifications

General			
Size	NG10	NG25	NG32
Interface	Subplate Mounting acc. ISO 6264		
Mounting Position	As desired, horizontal position preferred		
Ambient Temperature Range	$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$		
Hydraulic			
Maximum Operating Pressure	Ports P (or A) and X 350 Bar (5075 PSI); Port T (or B) and Y depressurized		
Pressure Range	105 Bar (1523 PSI), 210 Bar (3045 PSI), 350 Bar (5075 PSI)		
Nominal Flow R4V R6V	150 LPM (39.7 GPM) 250 LPM (66.1 GPM)	350 LPM (92.6 GPM) 500 LPM (132.3 GPM)	650 LPM (172.0 GPM 650 LPM (172.0 GPM)
Fluid	Hydraulic oil as per DIN 51524...51535, other on request		
Fluid Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$		
ViscosityPermitted Recommended	20 to $380 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}$ (93 to 1761 SSU)30 to $50 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}$ (139 to 232 SSU)		
Filtration	ISO Class 4406 (1999) 18/16/13 (acc. NAS 1638: 7)		
Electrical (Proportional Solenoid)			
Duty Ratio	100\% ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible		
Protection Class	IP65 in accordance with EN60529 (plugged and mounted)		
Supply Voltage	12 VDC (maximum current 2.3 amps) or 16 VDC (maximum current 1.3 mps)		
Coil Resistance	4 Ohm at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ for 12 V ; 12 Ohm at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ for 16 V		
Solenoid Connectors	Connector as per EN 175301-803		
Power Amplifier, Recommended	PCD00A-400		

Performance Curves

Signal / Pressure - R6V

Catalog MSG14-2550/US
Performance Curves

Proportional Pressure Relief Valves
Series R4V (Offboard Electronics)

The performance curves are measured with external drain.
For internal drain the tank pressure has to be added to curve.

Catalog MSG14-2550/US Performance Curves

Proportional Pressure Relief Valves
Series R6V (Offboard Electronics)

The performance curves are measured with external drain.
For internal drain the tank pressure has to be added to curve.

Inch equivalents for millimeter dimensions are shown in (**)

NG	ISO-code	x 1	x2	x3	x4	x5	x6	x7	y1	y2	y3	y4	y5	y6
10	6264-06-07-*-97	$\begin{gathered} \hline 42.9 \\ (1.69) \end{gathered}$	$\begin{gathered} 35.8 \\ (1.41) \end{gathered}$	$\begin{gathered} 21.5 \\ (0.85) \end{gathered}$	-	$\begin{gathered} \hline 7.2 \\ (0.28) \end{gathered}$	$\begin{gathered} 21.5 \\ (0.85) \end{gathered}$	0	$\begin{gathered} \hline 66.7 \\ (2.63) \end{gathered}$	$\begin{gathered} \hline 58.8 \\ (2.31) \end{gathered}$	$\begin{gathered} \hline 33.4 \\ (1.31) \end{gathered}$	$\begin{gathered} \hline 7.9 \\ (0.31) \end{gathered}$	$\begin{gathered} \hline 14.3 \\ (0.56) \end{gathered}$	-
25	6264-08-11-*-97	$\begin{gathered} 60.3 \\ (2.37) \\ \hline \end{gathered}$	$\begin{array}{r} 49.2 \\ (1.94) \\ \hline \end{array}$	$\begin{gathered} 39.7 \\ (1.56) \\ \hline \end{gathered}$	-	$\begin{gathered} 11.1 \\ (0.44) \\ \hline \end{gathered}$	$\begin{gathered} 20.6 \\ (0.81) \\ \hline \end{gathered}$	0	$\begin{array}{r} \hline 79.4 \\ (3.13) \\ \hline \end{array}$	$\begin{gathered} 73 \\ (2.87) \\ \hline \end{gathered}$	$\begin{gathered} 39.7 \\ (1.56) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.4 \\ (0.25) \\ \hline \end{gathered}$	$\begin{array}{r} 15.9 \\ (0.63) \\ \hline \end{array}$	-
32	6264-10-15-*-97	$\begin{array}{r} 84.2 \\ (3.31) \\ \hline \end{array}$	$\begin{gathered} 67.5 \\ (2.66) \\ \hline \end{gathered}$	$\begin{gathered} 59.5 \\ (2.34) \\ \hline \end{gathered}$	$\begin{array}{r} 42.1 \\ (1.66) \\ \hline \end{array}$	$\begin{gathered} 16.7 \\ (0.66) \\ \hline \end{gathered}$	$\begin{gathered} 24.6 \\ (0.97) \\ \hline \end{gathered}$	0	$\begin{array}{r} 96.8 \\ (3.81) \\ \hline \end{array}$	$\begin{gathered} 92.8 \\ (3.65) \\ \hline \end{gathered}$	$\begin{gathered} 48.4 \\ (1.91) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.8 \\ (0.15) \\ \hline \end{gathered}$	$\begin{gathered} 21.4 \\ (0.84) \\ \hline \end{gathered}$	-

Tolerance at X and Y pin holes and screw holes ± 0.1, at port holes ± 0.2.

NG	ISO-code	B1	B2	B3	H1	H2	H3	H4	H6	L1	L2	L3	L4	L5	L6
10	6264-06-07-*-97	$\begin{gathered} \hline 87.3 \\ (3.44) \end{gathered}$	$\begin{array}{\|c\|} \hline 33.4 \\ (1.31) \end{array}$	$\begin{gathered} \hline 71.0 \\ (2.80) \end{gathered}$	$\begin{aligned} & \hline 130.0 \\ & (5.12) \end{aligned}$	$\begin{aligned} & \hline 21.0 \\ & (0.83) \end{aligned}$	$\begin{array}{\|c\|} \hline 68.5 \\ (2.70) \end{array}$	$\begin{aligned} & \hline 109.5 \\ & (4.31) \end{aligned}$	-	$\begin{gathered} \hline 25.0 \\ (0.98) \end{gathered}$	$\begin{array}{\|c\|} \hline 90.8 \\ (3.57) \end{array}$	-	$\begin{aligned} & 143.0 \\ & (5.63) \end{aligned}$	$\begin{aligned} & 144.8 \\ & (5.70) \end{aligned}$	$\begin{aligned} & \hline 164.8 \\ & (6.49) \end{aligned}$
25	6264-08-11-*-97	$\begin{aligned} & 105.0 \\ & (4.13) \end{aligned}$	$\begin{gathered} \hline 39.7 \\ (1.56) \end{gathered}$	$\begin{gathered} 71.0 \\ (2.80) \end{gathered}$	$\begin{aligned} & 154.5 \\ & (6.08) \\ & \hline \end{aligned}$	$\begin{gathered} 29.0 \\ (1.14) \end{gathered}$	$\begin{gathered} 95.0 \\ (3.74) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 136.0 \\ & (5.35) \\ & \hline \end{aligned}$	-	$\begin{array}{r} 30.9 \\ (1.22) \end{array}$	$\begin{aligned} & 123.0 \\ & (4.84) \\ & \hline \end{aligned}$	-	$\begin{aligned} & 143.0 \\ & (5.63) \\ & \hline \end{aligned}$	$\begin{aligned} & 144.8 \\ & (5.70) \\ & \hline \end{aligned}$	$\begin{aligned} & 164.8 \\ & (6.49) \\ & \hline \end{aligned}$
32	6264-10-15-*-97	$\begin{aligned} & 120.0 \\ & (4.72) \end{aligned}$	$\begin{gathered} \hline 48.4 \\ (1.91) \end{gathered}$	$\begin{aligned} & 71.0 \\ & (2.80) \end{aligned}$	$\begin{aligned} & 167.0 \\ & (6.57) \end{aligned}$	$\begin{aligned} & \hline 30.0 \\ & (1.18) \end{aligned}$	$\begin{aligned} & 105.5 \\ & (4.15) \end{aligned}$	$\begin{aligned} & 146.5 \\ & (5.77) \end{aligned}$	-	$\begin{aligned} & \hline 29.8 \\ & (1.17) \end{aligned}$	$\begin{aligned} & 143.5 \\ & (5.65) \\ & \hline \end{aligned}$	-	$\begin{aligned} & 143.0 \\ & (5.63) \end{aligned}$	$\begin{aligned} & 144.8 \\ & (5.70) \end{aligned}$	$\begin{aligned} & 164.8 \\ & (6.49) \end{aligned}$

NG	ISO-code	d1max	d2max	d3	t3	d4	t4	d5	d6	Subplate
10	6264-06-07-*-97	$\begin{gathered} 15.0 \\ (0.59) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.0 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} 7.1 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (0.31) \\ \hline \end{gathered}$	M10	$\begin{gathered} \hline 16.0 \\ (0.63) \\ \hline \end{gathered}$	$\begin{gathered} 10.8 \\ (0.43) \\ \hline \end{gathered}$	$\begin{gathered} 17.0 \\ (0.67) \\ \hline \end{gathered}$	SPP3M6B910
25	6264-08-11-*-97	$\begin{gathered} \hline 23.4 \\ (0.92) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.1 \\ (0.28) \end{gathered}$	$\begin{gathered} 7.1 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (0.31) \end{gathered}$	M10	$\begin{gathered} 18.0 \\ (0.71) \\ \hline \end{gathered}$	$\begin{gathered} 10.8 \\ (0.43) \\ \hline \end{gathered}$	$\begin{gathered} \hline 17.0 \\ (0.67) \\ \hline \end{gathered}$	SPP6M8B910
32	6264-10-15-*-97	$\begin{gathered} 32.0 \\ (1.26) \end{gathered}$	$\begin{gathered} \hline 7.1 \\ (0.28) \end{gathered}$	$\begin{gathered} \hline 7.1 \\ (0.28) \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (0.31) \end{gathered}$	M10	$\begin{gathered} 20.0 \\ (0.79) \end{gathered}$	$\begin{gathered} \hline 10.8 \\ (0.43) \end{gathered}$	$\begin{gathered} 17.0 \\ (0.67) \end{gathered}$	SPP10M12B910

NG	ISO-code	Bolt Kit	周	$\xrightarrow{\sim}$	Seal Nitrile	Kit Fluorocarbon	Surface Finish
10	6264-06-07-*-97	BK505	4x M10 x 35 DIN912 12.9	$\begin{gathered} 63 \mathrm{Nm} \\ (46.5 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	S26-58507-0	S26-58507-5	$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3} \sqrt{\square 0.01 / 100}}{1 / / / / / / 1 / 1 / 7 / 7}$
25	6264-08-11-*-97	BK485	4x M10 x 45 DIN912 12.9		S26-58475-0	S26-58475-5	
32	6264-10-15-*-97	BK506	6x M10 x 45 DIN912 12.9		S26-58508-0	S26-58508-0	
Prop Section P2*					S26-58473-0	S26-58473-5	

* Please combine seal kit of one size with seal kit of Prop. Section P2 for complete seal kit.

Inch equivalents for millimeter dimensions are shown in (**)

NG	ISO-code	x1	x2	x3	x4	x5	x6	x7	y1	y2	y3	y4	y5	y6
10	6264-06-09-*-97	$\begin{gathered} 53.8 \\ (2.12) \end{gathered}$	$\begin{gathered} 47.5 \\ (1.87) \end{gathered}$	$\begin{gathered} 0.0 \\ (0.00) \end{gathered}$	-	$\begin{gathered} 22.1 \\ (0.87) \end{gathered}$	-	$\begin{gathered} 22.1 \\ (0.87) \end{gathered}$	$\begin{gathered} 53.8 \\ (2.12) \end{gathered}$	_	$\begin{gathered} 26.9 \\ (1.06) \end{gathered}$	-	_	-
25	6264-08-13-*-97	$\begin{gathered} 66.7 \\ (2.63) \end{gathered}$	$\begin{gathered} 55.6 \\ (2.19) \end{gathered}$	$\begin{gathered} 23.8 \\ (0.94) \end{gathered}$	-	$\begin{gathered} 11.1 \\ (0.44) \end{gathered}$	-	$\begin{gathered} 33.4 \\ (1.31) \end{gathered}$	$\begin{gathered} 70.0 \\ (2.76) \end{gathered}$	-	$\begin{gathered} 35.0 \\ (1.38) \end{gathered}$	-	-	-
32	6264-10-17-*-97	$\begin{array}{r} 88.9 \\ (3.50) \\ \hline \end{array}$	$\begin{array}{r} 76.2 \\ (3.00) \\ \hline \end{array}$	$\begin{gathered} 31.8 \\ (1.25) \\ \hline \end{gathered}$	-	$\begin{gathered} 12.7 \\ (0.50) \\ \hline \end{gathered}$	-	$\begin{array}{r} 44.5 \\ (1.75) \\ \hline \end{array}$	$\begin{gathered} 82.6 \\ (3.25) \end{gathered}$	-	$\begin{array}{r} 41.3 \\ (1.63) \\ \hline \end{array}$	-	-	-

Tolerance at X and Y pin holes and screw holes ± 0.1, at port holes ± 0.2.

NG	ISO-code	B1	B2	H1	H2	H3	H4	H5	H6	L1	L2	L3	L4	L5	L6
10	6264-06-09-*-97	$\begin{gathered} 80.0 \\ (3.15) \end{gathered}$	$\begin{gathered} 26.9 \\ (1.06) \end{gathered}$	$\begin{aligned} & 158.7 \\ & (6.25) \end{aligned}$	$\begin{gathered} 27.0 \\ (1.06) \end{gathered}$	$\begin{gathered} 88.0 \\ (3.46) \end{gathered}$	-	$\begin{gathered} \hline 20.5 \\ (0.81) \end{gathered}$	$\begin{gathered} \hline 25.0 \\ (0.98) \end{gathered}$	$\begin{gathered} 52.0 \\ (2.05) \end{gathered}$	$\begin{aligned} & 117.0 \\ & (4.61) \end{aligned}$	$\begin{aligned} & 182.3 \\ & (7.18) \end{aligned}$	$\begin{gathered} \hline 14.4 \\ (0.57) \end{gathered}$	-	$\begin{gathered} 29.5 \\ (1.16) \end{gathered}$
25	6264-08-13-*-97	$\begin{aligned} & 100.0 \\ & (3.94) \end{aligned}$	$\begin{gathered} 35.0 \\ (1.38) \end{gathered}$	$\begin{aligned} & 161.2 \\ & (6.35) \end{aligned}$	$\begin{gathered} 45.5 \\ (1.19) \end{gathered}$	$\begin{gathered} 91.5 \\ (3.60) \end{gathered}$	-	$\begin{gathered} 25.0 \\ (0.98) \end{gathered}$	$\begin{gathered} 12.0 \\ (0.47) \end{gathered}$	$\begin{gathered} 37.9 \\ (1.49) \end{gathered}$	$\begin{aligned} & 124.5 \\ & (4.90) \end{aligned}$	$\begin{aligned} & 182.3 \\ & (7.18) \end{aligned}$	$\begin{gathered} 14.4 \\ (0.57) \end{gathered}$	-	$\begin{array}{r} 36.5 \\ (1.44) \end{array}$
32	6264-10-17-*-97	$\begin{aligned} & 120.0 \\ & (4.72) \end{aligned}$	$\begin{gathered} 41.3 \\ (1.63) \\ \hline \end{gathered}$	$\begin{aligned} & 166.7 \\ & (6.56) \end{aligned}$	$\begin{gathered} 52.0 \\ (2.05) \end{gathered}$	$\begin{gathered} 97.0 \\ (3.82) \end{gathered}$	-	$\begin{gathered} 26.5 \\ (1.04) \end{gathered}$	$\begin{gathered} 13.5 \\ (0.53) \end{gathered}$	$\begin{gathered} 44.3 \\ (1.74) \\ \hline \end{gathered}$	$\begin{aligned} & 153.0 \\ & (6.02) \end{aligned}$	$\begin{aligned} & 182.3 \\ & (7.18) \end{aligned}$	$\begin{gathered} 14.4 \\ (0.57) \\ \hline \end{gathered}$	-	$\begin{array}{r} 46.5 \\ (1.83) \\ \hline \end{array}$

NG	ISO-code	d1max	d2max	d3	t3	d4	t4	d5	d6	Subplate
10	6264-06-09-*-97	$\begin{gathered} 14.7 \\ (0.58) \end{gathered}$	$\begin{gathered} 4.8 \\ (0.19) \end{gathered}$	$\begin{gathered} 7.5 \\ (0.30) \end{gathered}$	$\begin{gathered} \hline 10.0 \\ (0.39) \end{gathered}$	M12	$\begin{gathered} \hline 20.0 \\ (0.79) \end{gathered}$	$\begin{gathered} \hline 13.5 \\ (0.53) \end{gathered}$	$\begin{gathered} \hline 20.0 \\ (0.79) \end{gathered}$	SPP3R6B910
25	6264-08-13-*-97	$\begin{gathered} 23.4 \\ (0.92) \end{gathered}$	$\begin{gathered} 6.3 \\ (0.25) \end{gathered}$	$\begin{gathered} 7.5 \\ (0.30) \end{gathered}$	$\begin{gathered} 10.0 \\ (0.39) \end{gathered}$	M16	$\begin{gathered} 27.0 \\ (1.06) \end{gathered}$	$\begin{gathered} 17.5 \\ (0.69) \end{gathered}$	$\begin{gathered} 25.0 \\ (0.98) \end{gathered}$	SPP6R10B910
32	6264-10-17-*-97	$\begin{gathered} 32.0 \\ (1.26) \end{gathered}$	$\begin{gathered} 6.3 \\ (0.25) \\ \hline \end{gathered}$	$\begin{gathered} 7.5 \\ (0.30) \\ \hline \end{gathered}$	$\begin{array}{r} 10.0 \\ (0.39) \\ \hline \end{array}$	M18	$\begin{gathered} 28.0 \\ (1.10) \\ \hline \end{gathered}$	$\begin{gathered} 20.0 \\ (0.79) \\ \hline \end{gathered}$	$\begin{gathered} 30.0 \\ (1.18) \end{gathered}$	SPP10R12B910

NG	ISO-code	Bolt Kit	回 兔	$\xrightarrow{2}$	Seal Nitrile	Kit Fluorocarbon	Surface Finish
10	6264-06-09-*-97	BK494	4x M12 x 45 DIN912 12.9	$\begin{gathered} 108 \mathrm{Nm} \text { (79.7 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	S26-98589-0	S26-98589-5	
25	6264-08-13-*-97	BK366	4x M16 x 70 DIN912 12.9	$\begin{gathered} 264 \mathrm{Nm}(194.7 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	S26-96396-0	S26-96396-5	$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3} \sqrt{\square 0.01 / 100}}{1 / 7 / 1 / 7 / 1 / 7}$
32	6264-10-17-*-97	BK507	4x M18 x 75 DIN912 12.9	$\begin{gathered} 398 \mathrm{Nm}(293.5 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	S26-96392-0	S26-96392-5	

General Description

Series R4V and R6V proportional pressure relief valves feature onboard electronics based on the functionality of the digital amplifier PCDOO.
The digital onboard electronic is situated in a robust metal housing and can be used in rough environments.
The nominal values of the valves are factory set.
Additionally the ProPxD software permits the editing of all parameters. The software is also used for the digital electronic modules. The cable for connection to a serial RS-232 interface is available as accessory.
The electrical connection is available in 2 options:
Code 10V: $\quad 6+$ PE central connection $0 . . .+10 \mathrm{~V}$ command signal (preset) +10 V reference voltage output
Code 4MA: $6+$ PE central connection $4 . .20 \mathrm{~mA}$ command signal (preset)
The proportional solenoid operated pilot stage with integrated electronics controls a seated type main stage. The valves are available with an optional mechanical maximum pressure adjustment.

R6V06

B

- 3 pressure ranges
- 2 interfaces: R4V Subplate, ISO 6264 (DIN 24340 Form D) R6V Subplate, ISO 6264 (DIN 24340 Form E)
- Optional mechanical maximum pressure adjustment

R6V OBE

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
B01_Cat2550.indd, ddp, 04/19

Ordering Information

Performance Curves

Signal/Pressure Curve - R4V

Signal/Pressure Curve - R6V

Catalog MSG14-2550/US
Specifications

Proportional Pressure Relief Valves
Series R4V and R6V (Onboard Electronics)

General				
Size		NG10	NG25	NG32
Interface		Subplate mounting acc. ISO 6264		
Mounting Position		as desired, horizontal mounting prefered		
Ambient Temperature	[${ }^{\circ} \mathrm{C}$]	$-20 \ldots+60 ;\left(-4^{\circ} \mathrm{F} \ldots+140^{\circ} \mathrm{F}\right)$		
MTTF $_{\text {d }}$ Value	[years]	50		
Vibration Strength	[g]	10 sinus $5 . . .2000 \mathrm{~Hz}$ acc. to IEC 68-2-6 30 noise $20 . . .2000 \mathrm{~Hz}$ acc. to IEC 68-2-36 15 shock acc. to IEC 68-2-27		
Hydraulic				
Maximum Operating Pressure		Ports P (or A) and X up to 350 Bar (5075 PSI), port T (or B) and Y 30 Bar (435 PSI)		
Pressure Range		105 Bar (1523 PSI), 210 Bar (3045 PSI), 350 (5075 PSI)		
Nominal Flow Series R4V Series R6V		150 LPM (39.7 GPM) 250 LPM (66.1 GPM)	350 LPM (92.6 GPM) 500 LPM (132.3 GPM)	650 LPM (172.0 GPM) 650 LPM (172.0 GPM)
Fluid		Hydraulic oil according to DIN 51524...51535, other on request		
Viscosity Recommended Permitted	$\begin{array}{r} {[\mathrm{cSt}] /} \\ {\left[\mathrm{mm}^{2} / \mathrm{s}\right]} \\ {[\mathrm{cSt}] /} \\ {\left[\mathrm{mm}^{2} / \mathrm{s}\right]} \end{array}$	$\begin{aligned} & 30 \ldots 50(139 \ldots 232 \text { SSU }) \\ & 20 \ldots 380(93 \ldots 1761 \\ & \text { SSU) } \end{aligned}$		
Fluid Temperature	[${ }^{\circ} \mathrm{C}$]	$\begin{aligned} & \hline-20 \ldots+60 ;\left(-4^{\circ} \mathrm{F} \ldots\right. \\ & \left.+140^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$		
Filtration		ISO 4406 (1999); 18/16/13 (acc. NAS 1638: 7)		
Hysteresis	[\%]	< 1.5		
Electrical				
Duty Ratio	[\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible		
Supply Voltage	VDC	18...30, ripple < 5\% eff., surge free		
Current Consumption Maximum	[A]	2.0		
Pre-fusing	[A]	2.5 medium lag		
Potentiometer Supply	[V]	+10/ $\pm 5 \%$ max. 10 mA		
Command Signal Code 10V Voltage Code 4MA Current	$\begin{gathered} {[\mathrm{V}]} \\ {[\mathrm{mA}]} \end{gathered}$	$0 \ldots+10$, ripple <0.01 \% eff., surge free, $\mathrm{Ri}=100$ kOhm $4 . .20$, ripple $<0.01 \%$ eff., surge free, $R i=200$ Ohm $<3.6 \mathrm{~mA}=$ enable off, $>3.8 \mathrm{~mA}=$ enable on (acc. NAMUR NE43)		
Differential Input Voltage Max.	$\begin{aligned} & {[\mathrm{V}]} \\ & {[\mathrm{V}]} \end{aligned}$	30 for terminal D and E against PE (terminal G)11 for terminal D and E against OV (terminal B)		
Adjustment Ranges Minimum current Maximum current Ramp	[\%] [\%] [s]	$\begin{array}{\|l} 0 \ldots . .50 \\ 50 \ldots 100 \\ 0 \ldots . .32 .5 \end{array}$		
Interface		RS-232, parametrizing connection 5 pole		
EMC		EN 61000-6-2, EN 61000-6-4		
Central Connection		6 + PE acc. EN 175201-804		
Cable Specification	[mm^{2}]	7×1.0 (AWG 18) overall braid shield		
Cable Length Maximum	[m]	50 (164 ft.)		

Proportional Pressure Relief Valves
Series R4V (Onboard Electronics)

Proportional Pressure Relief Valves Series R6V (Onboard Electronics)

Code 10V

6 + PE acc. EN 175201-804

Code 4MA
6 + PE acc. EN 175201-804

ProPxD Interface Program

The ProPxD software allows quick and easy setting of the digital valve electronics. Individual parameters as well as complete settings can be viewed, changed and saved via the comfortable user interface. Parameter sets saved in the non-volatile memory can be loaded to other valves of the same type or printed out for documentation purposes.

Features

- Simple editing of all parameters
- Storage and loading of optimized parameter adjustments
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR} 95$ upwards
- Communication between PC and electronics via serial interface RS-232
The valve electronics cannot be connected to a PC with a standard USB cable - this can result in damages of PC and/or valve electronics.
Simple to use interface program. Download free of charge www.parker.com/propxd

The parametrizing cable may be ordered under item no. 40982923.

$\bigcirc \square$

Dimensions

Proportional Pressure Relief Valves
Series R4V (Onboard Electronics)

Inch equivalents for millimeter dimensions are shown in (**)

NG	ISO-Code	x1	x 2	x3	x4	x5	x6	x7	y1	y2	y3	y4	y5	y6
10	6264-06-07-*-97	$\begin{gathered} \hline 42.9 \\ (1.69) \\ \hline \end{gathered}$	$\begin{gathered} 35.8 \\ (1.41) \\ \hline \end{gathered}$	$\begin{gathered} 21.5 \\ (0.85) \\ \hline \end{gathered}$	-	$\begin{gathered} 7.2 \\ (0.28) \end{gathered}$	$\begin{gathered} 21.5 \\ (0.85) \\ \hline \end{gathered}$	0	$\begin{gathered} \hline 66.7 \\ (2.63) \\ \hline \end{gathered}$	$\begin{gathered} 58.8 \\ (2.31) \\ \hline \end{gathered}$	$\begin{gathered} 33.4 \\ (1.31) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.9 \\ (0.31) \\ \hline \end{gathered}$	$\begin{gathered} \hline 14.3 \\ (0.56) \\ \hline \end{gathered}$	-
25	6264-08-11-*-97	$\begin{gathered} 60.3 \\ (2.37) \\ \hline \end{gathered}$	$\begin{gathered} 49.2 \\ (1.94) \\ \hline \end{gathered}$	$\begin{gathered} 39.7 \\ (1.56) \\ \hline \end{gathered}$	-	$\begin{gathered} \hline 11.1 \\ (0.44) \\ \hline \end{gathered}$	$\begin{gathered} 20.6 \\ (0.81) \\ \hline \end{gathered}$	0	$\begin{gathered} \hline 79.4 \\ (3.13) \\ \hline \end{gathered}$	$\begin{gathered} \hline 73 \\ (2.87) \\ \hline \end{gathered}$	$\begin{gathered} 39.7 \\ (1.56) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.4 \\ (0.25) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15.9 \\ (0.63) \\ \hline \end{gathered}$	-
32	6264-10-15-*-97	$\begin{gathered} \hline 84.2 \\ (3.31) \\ \hline \end{gathered}$	$\begin{gathered} \hline 67.5 \\ (2.66) \\ \hline \end{gathered}$	$\begin{gathered} 59.5 \\ (2.34) \\ \hline \end{gathered}$	$\begin{gathered} \hline 42.1 \\ (1.66) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16.7 \\ (0.66) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24.6 \\ (0.97) \end{gathered}$	0	$\begin{gathered} \hline 96.8 \\ (3.81) \\ \hline \end{gathered}$	$\begin{gathered} 92.8 \\ (3.65) \\ \hline \end{gathered}$	$\begin{gathered} \hline 48.4 \\ (1.91) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.8 \\ (0.15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21.4 \\ (0.84) \\ \hline \end{gathered}$	-

Tolerance at X and Y pin holes and screw holes ± 0.1, at port holes ± 0.2.

NG	ISO-Code	B1	B2	H1	H2	H3	H4	H5	H6	L1	L2	L3	L4	L5	L6
10	6264-06-07-*-97	87.3	33.4	200.3	21.0	60.0	102.0	151.0	30.0	25.0	90.8	164.2	4.5	-	-
		(3.44)	(1.31)	(7.89)	(0.83)	(2.36)	(4.02)	(5.94)	(1.18)	(0.98)	(3.57)	(6.46)	(0.18)	-	
25	6264-08-11-*-97	105.0	39.7	226.8	29.0	86.5	128.5	184.0	30.0	30.9	123.0	164.2	4.5	-	-
		(4.13)	(1.56)	(8.93)	(1.14)	(3.41)	(5.06)	(7.24)	(1.18)	(1.22)	(4.84)	(6.46)	(0.18)	-	
32	6264-10-15-*-97	120.0	48.4	237.3	29.0	97.0	139.0	194.5	30.0	29.8	143.5	164.2	4.5	-	-
		(4.72)	(1.91)	(9.34)	(1.14)	(3.82)	(5.47)	(7.66)	(1.18)	(1.17)	(5.65)	(6.46)	(0.18)	-	

NG	ISO-Code	d1max	d2max	d3	t3	d4	t4	d5	d6	Subplate
10	6264-06-07-*-97	$\begin{gathered} \hline 15.0 \\ (0.59) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.0 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.1 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (0.31) \\ \hline \end{gathered}$	M10	$\begin{gathered} \hline 16.0 \\ (0.63) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10.8 \\ (0.43) \\ \hline \end{gathered}$	$\begin{gathered} \hline 17.0 \\ (0.67) \\ \hline \end{gathered}$	SPP3M6B910
25	6264-08-11-*-97	$\begin{gathered} \hline 23.4 \\ (0.92) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.1 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.1 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (0.31) \\ \hline \end{gathered}$	M10	$\begin{gathered} \hline 18.0 \\ (0.71) \\ \hline \end{gathered}$	$\begin{gathered} 10.8 \\ (0.43) \\ \hline \end{gathered}$	$\begin{gathered} \hline 17.0 \\ (0.67) \\ \hline \end{gathered}$	SPP6M8B910
32	6264-10-15-*-97	$\begin{gathered} \hline 32.0 \\ (1.26) \end{gathered}$	$\begin{gathered} 7.1 \\ (0.28) \end{gathered}$	$\begin{gathered} 7.1 \\ (0.28) \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (0.31) \end{gathered}$	M10	$\begin{gathered} \hline 20.0 \\ (0.79) \end{gathered}$	$\begin{gathered} 10.8 \\ (0.43) \end{gathered}$	$\begin{gathered} 17.0 \\ (0.67) \end{gathered}$	SPP10M12B910

NG	ISO-Code	Bolt Kit	野 5	$\stackrel{5}{2}$	Seal Kit		Surface Finish
					Nitrile	Fluorocarbon	
10	6264-06-07-*-97	BK505	4x M10 x 35 DIN912 12.9	$\begin{gathered} \hline 63 \mathrm{Nm}(46.5 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	S26-58507-0*	S26-58507-5*	$\frac{\sqrt{\mathrm{R}_{\max } 6.3} \sqrt{\square 0.01 / 100}}{11 / 1 / 1 / 1 / 1 / 1}$
25	6264-08-11-*-97	BK485	4x M10 x 45 DIN912 12.9	$\begin{gathered} \hline 63 \mathrm{Nm} \text { (46.5 lb.-ft.) } \\ \pm 15 \% \\ \hline \end{gathered}$	S26-58475-0*	S26-58475-5*	
32	6264-10-15-*-97	BK506	6x M10 x 45 DIN912 12.9	$\begin{gathered} \hline 63 \mathrm{Nm}(46.5 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	S26-58508-0*	S26-58508-5*	
Prop. Section P2*					S26-58473-0	S26-58473-5	

Please combine seal kit of one size with seal kit of Prop. Section P2 for complete seal kit.

Y: external drain port G 1/8"
$\bigcirc \square$

Proportional Pressure Relief Valves
Series R6V (Onboard Electronics)

Inch equivalents for millimeter dimensions are shown in (**)

NG	ISO-Code	x1	x2	x3	x4	x5	x6	x7	y1	y2	y3	y4	y5	y6
10	6264-06-09-*-97	$\begin{gathered} 53.8 \\ (2.12) \end{gathered}$	$\begin{gathered} \hline 47.5 \\ (1.87) \end{gathered}$	$\begin{gathered} \hline 0.0 \\ (0.00) \end{gathered}$	-	$\begin{gathered} \hline 22.1 \\ (0.87) \end{gathered}$	-	$\begin{gathered} \hline 22.1 \\ (0.87) \end{gathered}$	$\begin{gathered} 53.8 \\ (2.12) \end{gathered}$	-	$\begin{gathered} \hline 26.9 \\ (1.06) \end{gathered}$	-	-	-
25	6264-08-13-*-97	$\begin{gathered} 66.7 \\ (2.63) \end{gathered}$	$\begin{gathered} 55.6 \\ (2.19) \end{gathered}$	$\begin{gathered} 23.8 \\ (0.94) \end{gathered}$	-	$\begin{gathered} 11.1 \\ (0.44) \end{gathered}$	-	$\begin{gathered} 33.4 \\ (1.31) \end{gathered}$	$\begin{gathered} 70.0 \\ (2.76) \end{gathered}$	-	$\begin{gathered} 35.0 \\ (1.38) \end{gathered}$	-	-	-
32	6264-10-17-*-97	$\begin{gathered} 88.9 \\ (3.50) \\ \hline \end{gathered}$	$\begin{gathered} 76.2 \\ (3.00) \\ \hline \end{gathered}$	$\begin{gathered} 31.8 \\ (1.25) \\ \hline \end{gathered}$	-	$\begin{gathered} 12.7 \\ (0.50) \\ \hline \end{gathered}$	-	$\begin{gathered} 44.5 \\ (1.75) \\ \hline \end{gathered}$	$\begin{gathered} 82.6 \\ (3.25) \\ \hline \end{gathered}$	-	$\begin{gathered} 41.3 \\ (1.63) \\ \hline \end{gathered}$	-	-	-

Tolerance at X and Y pin holes and screw holes ± 0.1, at port holes ± 0.2.

NG	ISO-Code	B1	B2	H1	H2	H3	H4	H5	H6	L1	L2	L3	L4	L5	L6
10	6264-06-09-*-97	$\begin{gathered} 80.0 \\ (3.15) \end{gathered}$	$\begin{gathered} 26.9 \\ (1.06) \end{gathered}$	$\begin{aligned} & 185.1 \\ & (7.29) \end{aligned}$	$\begin{gathered} 27.0 \\ (1.06) \end{gathered}$	$\begin{gathered} 88.0 \\ (3.46) \end{gathered}$	$\begin{aligned} & 135.8 \\ & (5.35) \end{aligned}$	$\begin{gathered} 20.5 \\ (0.81) \end{gathered}$	$\begin{gathered} \hline 25.0 \\ (0.98) \end{gathered}$	$\begin{gathered} 52.0 \\ (2.05) \end{gathered}$	$\begin{aligned} & 117.0 \\ & (4.61) \end{aligned}$	$\begin{aligned} & 182.3 \\ & (7.18) \end{aligned}$	$\begin{gathered} 14.4 \\ (0.57) \end{gathered}$	-	$\begin{gathered} 29.5 \\ (1.16) \end{gathered}$
25	6264-08-13-*-97	$\begin{aligned} & 100.0 \\ & (3.94) \end{aligned}$	$\begin{gathered} 35.0 \\ (1.38) \end{gathered}$	$\begin{aligned} & 188.6 \\ & (7.43) \end{aligned}$	$\begin{gathered} \hline 45.5 \\ (1.79) \end{gathered}$	$\begin{gathered} 91.5 \\ (3.60) \end{gathered}$	$\begin{array}{r} 139.8 \\ (5.50) \end{array}$	$\begin{gathered} 25.0 \\ (0.98) \end{gathered}$	$\begin{gathered} 12.0 \\ (0.47) \end{gathered}$	$\begin{gathered} 37.9 \\ (1.49) \end{gathered}$	$\begin{aligned} & 124.5 \\ & (4.90) \end{aligned}$	$\begin{aligned} & 182.3 \\ & (7.18) \end{aligned}$	$\begin{gathered} 14.4 \\ (0.57) \end{gathered}$	-	$\begin{array}{r} 36.5 \\ (1.44) \end{array}$
32	6264-10-17-*-97	$\begin{aligned} & \hline 120.0 \\ & (4.72) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 41.3 \\ (1.63) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 194.1 \\ & (7.64) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 52.0 \\ (2.05) \\ \hline \end{gathered}$	$\begin{gathered} \hline 97.0 \\ (3.82) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 144.8 \\ & (5.70) \\ & \hline \end{aligned}$	$\begin{gathered} 26.5 \\ (1.04) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13.5 \\ (0.53) \\ \hline \end{gathered}$	$\begin{gathered} \hline 44.3 \\ (1.74) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 153.0 \\ & (6.02) \\ & \hline \end{aligned}$	$\begin{aligned} & 182.3 \\ & (7.18) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 14.4 \\ (0.57) \\ \hline \end{gathered}$	-	$\begin{array}{r} \hline 46.5 \\ (1.83) \\ \hline \end{array}$

NG	ISO-Code	d1max	d2max	$\mathbf{d 3}$	$\mathbf{t 3}$	d4	t4	d5	d6	Subplate
10	$6264-06-09-^{*}-97$	14.7 (0.58)	4.8 (0.19)	7.5 (0.30)	10.0 (0.39)	M12	20.0 (0.79)	13.5 (0.53)	20.0 (0.79)	SPP3R6B910
	$6264-08-13-*-97$	23.4 (0.92)	6.3 (0.25)	7.5 (0.30)	10.0 (0.39)		27.0 (1.06)	17.5 (0.69)	25.0 (0.98)	SPP6R10B910
32	$6264-10-17-^{*}-97$	32.0 (1.26)	6.3 (0.25)	7.5 (0.30)	10.0 (0.39)	M18	28.0 (1.10)	20.0 (0.79)	30.0 (1.18)	SPP10R12B910

NG	ISO-Code	Bolt Kit	思	5	Seal Kit		Surface Finish
					Nitrile	Fluorocarbon	
10	6264-06-09-*-97	BK494	4x M12 x 45 DIN912 12.9	$\begin{gathered} 108 \mathrm{Nm} \text { (79.7 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	S26-98589-0	S26-98589-5	$\frac{\sqrt{\mathrm{R}_{\max } 6.3} \sqrt{\square 0.01 / 100}}{1 / 1 / / 1 / 1 / 1 / 7}$
25	6264-08-13-*-97	BK366	4x M16 x 70 DIN912 12.9	$\begin{gathered} 264 \mathrm{Nm} \text { (194.7 lb. } \mathrm{ft} .) \\ \pm 15 \% \\ \hline \end{gathered}$	S26-96396-0	S26-96396-5	
32	6264-10-17-*-97	BK507	4x M18 x 75 DIN912 12.9	$\begin{gathered} 398 \mathrm{Nm}(293.5 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	S26-96392-0	S26-96392-5	

Technical Information

Proportional Pressure Relief Valves
Series R4V*P2 (In-line Mounted)

General Description

Series R4V*P2 proportional pressure relief valves are based on the mechanically adjusted Series R4V. The additional proportional unit between the mechanical pilot valve and the main stage allows continuous pressure adjustment.

The optimum performance can be achieved in combination with the digital amplifier module
 PCD00A-400.

Features

- Pilot operated with manual adjustment
- Continuous adjustment by proportional solenoid
- 2 interfaces:
- L-body (R4V06-G3/4", R4V10-G1 1/4")
- T-body (R4V03-G1/2", R4V06-G1")
- 3 pressure ranges
- With mechanical maximum pressure adjustment

Specifications

General				
Size	T-Body		L-Body	
	03 (1/2")	06 (1")	06 (3/4")	10 (1-1/4")
Mounting	Threaded Body			
Mounting Position	Unrestricted			
Ambient Temp. Range	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$			
Hydraulic				
Max. Operating Pressure	Ports A and X up to 350 Bar (5075 PSI); Ports B and Y 30 Bar (435 PSI)			
Pressure Range	105 Bar (1523 PSI), 210 Bar (3045 PSI), 350 Bar (5075 PSI)			
Nominal Flow	60 LPM (15.9 GPM)	200 LPM (52.9 GPM)	200 LPM (52.9 GPM)	450 LPM (119.0 GPM)
Fluid	Hydraulic oil as per DIN 51524...51535, other on request			
Fluid Temperature	$-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.176{ }^{\circ} \mathrm{F}\right)$			
Viscosity $\begin{aligned} & \text { Permitted } \\ & \text { Recommended }\end{aligned}$	10 to $380 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}(46$ to 1761 SSU$)$ 30 to $80 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}$ (139 to 371 SSU)			
Filtration	ISO Class 4406 (1999) 18/16/13 (acc. NAS 1638: 7)			
Electrical (Proportional Solenoid)				
Duty Ratio	100\% ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible			
Nominal Voltage	12 VDC			
Max. Current	2.3 amps			
Coil Resistance	4 Ohm at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$			
Protection Class	IP65 in accordance with EN60529 (plugged and mounted)			
Power Amplifier	PCD00A-400			

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
B01_Cat2550.indd, ddp, 04/19

Ordering Information

Performance Curve

Signal / Pressure

Proportional Pressure Relief Valves
Series R4V*P2 (In-line Mounted)

R4V03*P2 ${ }^{\text {1) }}$

R4V06*P2 ${ }^{\text {1) }}$

R4V10*P2 ${ }^{1)}$

1) The performance curves are measured with external drain. For internal drain, the tank pressure has to be added to the curve.

B01_Cat2550.indd, ddp, 04/19

T-Body

Inch equivalents for millimeter dimensions are shown in (**)

 Prop. Section P2 for complete seal kit.

Size	Body	B1	H1	H2	H3	H4	H5	L1	L2
03	T-body	85.0	27.5	21.0	59.5	144.5	106.5	53.0	92.0
		(3.35)	(1.08)	(0.83)	(2.34)	(5.69)	(4.19)	(2.09)	(3.62)
06	T-body	136.0	38.0	28.0	93.0	178.0	140.0	66.5	117.5
		(5.35)	(1.50)	(1.10)	(3.66)	(7.01)	(5.51)	(2.62)	(4.63)

Ports	Function	Port Size	
		R4V03*P2 T-body	R4V06*P2 T-body
A	Pressure (inlet)	G1/2"	G1"
B	Tank (outlet)	G1/2"	G1"
$\mathrm{X}^{1)}$	Ext. Remote Control or Vent Connection		G1/4"
$\mathrm{Y} 1^{2)}$	External Drain		

${ }^{1)}$ Closed when supplied
${ }^{2)}$ Port Y1 is only available at drain line (code 2) external from the pilot head

Dimensions

Proportional Pressure Relief Valves
Series R4V*P2 (In-line Mounted)

L-Body

Inch equivalents for millimeter dimensions are shown in (**)

164.8 -14

Seal Kits		
Size	Nitrile	Fluorocarbon
06	S26-58475-0	S26-58475-5
10	S26-58508-0	S26-58508-5
Prop.Section P2*	S26-58473-0	S26-58473-5

* Please combine seal kit of one size with seal kit of Prop. Section P2 for complete seal kit.

Size	Body	B2	B3	H6	H7	H8	H9	H10	L3
06	L-body	81.0	76.0	23.0	51.0	81.0	166.0	128.0	49.0
		(3.19)	(2.99)	(0.91)	(2.01)	(3.19)	(6.54)	(5.04)	(1.93)
10	L-body	120.7	85.8	31.8	50.8	96.0	181.0	143.0	49.8
		(4.75)	(3.38)	(1.25)	(2.00)	(3.78)	(7.13)	(5.63)	(1.96)

| Ports | Function | Port size | |
| :---: | :---: | :---: | :---: | :---: |
| | | R4V06 L-body | R4V10 L-body |
| A | Pressure (inlet) | G3/4" | G1-1/4" |
| B | Tank (outlet) | G3/4" | G1-1/4" |
| $\mathrm{X}^{1)}$ | Ext. Remote Control or Vent Connection | | G1/4" |
| $\mathrm{Y} 1^{2)}$ | External Drain | | |

[^12]${ }^{2)}$ Port Y1 is only available at drain line (code 2) external from the pilot head

General Description

Series R5V*P2 proportional pressure relief valves are based on the mechanical adjusted Series R5V. The additional proportional unit between the mechanical pilot valve and the main stage allows continuous pressure adjustment.
The optimum performance can be achieved in combination with the digital amplifier module PCD00A-400.

Features

- Pilot operated with manual adjustment
- Continuous adjustment by proportional solenoid
- R5V with 3-port body:
-4 sizes (SAE 3/4", 1", 1-1/4", 1-1/2")
- SAE 61 and SAE 62 flange
- 3 pressure ranges
- With mechanical maximum pressure adjustment

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
B01_Cat2550.indd, ddp, 04/19

General				
Size	06 (3/4")	08 (1")	10 (1-1/4")	12 (1-1/2")
Mounting	Flanged according to SAE 61			
Mounting Position	Unrestricted			
Ambient Temperature Range	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$			
Hydraulic				
Maximum Operating SAE 61 Pressure Ports A, B SAE 61 Port Y1 SAE 62 Ports A, B SAE 62 	$\begin{gathered} 350 \mathrm{Bar} \\ \text { (5075 PSI) } \end{gathered}$	$\begin{gathered} 350 \mathrm{Bar} \\ \text { (5075 PSI) } \end{gathered}$	280 Bar (4060 PSI)	$\begin{gathered} 210 \mathrm{Bar} \\ \text { (3045 PSI) } \end{gathered}$
	30 Bar (435 PSI)	30 Bar (435 PSI)	30 Bar $(435 \mathrm{PSI})$	30 Bar (435 PSI)
	$\begin{gathered} 350 \mathrm{Bar} \\ \text { (5075 PSI) } \\ \hline \end{gathered}$	$\begin{gathered} 350 \mathrm{Bar} \\ \text { (5075 PSI) } \\ \hline \end{gathered}$	$\begin{gathered} 350 \mathrm{Bar} \\ \text { (5075 PSI) } \\ \hline \end{gathered}$	$\begin{gathered} 350 \mathrm{Bar} \\ \text { (5075 PSI) } \\ \hline \end{gathered}$
	$\begin{gathered} 30 \mathrm{Bar} \\ \text { (435 PSI) } \end{gathered}$	$\begin{gathered} 30 \mathrm{Bar} \\ \text { (435 PSI) } \\ \hline \end{gathered}$	$\begin{gathered} 30 \mathrm{Bar} \\ (435 \mathrm{PSI}) \\ \hline \end{gathered}$	$\begin{gathered} 30 \mathrm{Bar} \\ (435 \mathrm{PSI}) \\ \hline \end{gathered}$
Pressure Range	105 Bar (1523 PSI), 210 Bar (3045 PSI), 350 Bar (5075 PSI)			
Nominal Flow	$\begin{gathered} 90 \mathrm{LPM} \\ (23.8 \mathrm{GPM}) \\ \hline \end{gathered}$	$\begin{gathered} 300 \mathrm{LPM} \\ \text { (79.4 GPM) } \end{gathered}$	$\begin{gathered} 600 \text { LPM } \\ \text { (158.7 GPM) } \end{gathered}$	$\begin{gathered} 600 \text { LPM } \\ \text { (158.7 GPM) } \end{gathered}$
Fluid	Hydraulic oil as per DIN 51524...51535, other on request			
Fluid Temperature	$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$			
Viscosity Permitted Recommended	$\begin{array}{\|l\|} \hline 10 \text { to } 650 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}(46 \text { to } 3013 \mathrm{SSU}) \\ 30 \text { to } 80 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}(139 \text { to } 371 \mathrm{SSU}) \\ \hline \end{array}$			
Filtration	ISO Class 4406 (1999) 18/16/13 (acc. NAS 1638: 7)			
Electrical (Proportional Solenoid)				
Duty Ratio	100\% ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible			
Nominal Voltage	12 VDC			
Max. Current	2.3 amps			
Coil Resistance	4 Ohm at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$			
Solenoid Connection	Connector as per EN175301-803			
Protection Class	IP65 in accordance with EN60529 (plugged and mounted)			
Power Amplifier	PCD00A-400			

Ordering Information

Performance Curve

Signal / Pressure

Proportional Pressure Relief Valves
Series R5V*P2 (Flange Mounted)

R5V06*P2 ${ }^{1)}$

R5V08*P2 ${ }^{1)}$

R5V10*P2 ${ }^{1)}$

${ }^{1)}$ The performance curves are measured with external drain.
For internal drain, the tank pressure has to be added to the curve.
B01_Cat2550.indd, ddp, 04/19

Inch equivalents for millimeter dimensions are shown in (**)

Inch equivalents for millimeter dimensions are shown in (**)

3-Port

SAE 61

Size	B1	B2	H1	H2	H3	H4	H5	H6	H7	L1	L2	L3	L4	L5	d1	d2	d3	d4 (option 152)	11
06	$\begin{gathered} \hline 60.0 \\ (2.36) \end{gathered}$	$\begin{array}{\|c\|} \hline 22.2 \\ (0.87) \\ \hline \end{array}$	$\begin{aligned} & 166.0 \\ & (6.54) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 28.0 \\ (1.10) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 22.2 \\ (0.87) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 81.0 \\ (3.19) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 41.6 \\ (1.64) \end{array}$	$\begin{array}{\|c\|} \hline 47.6 \\ (1.87) \end{array}$	$\begin{array}{\|l\|} \hline 128.0 \\ (5.04) \end{array}$	$\begin{array}{\|c\|} \hline 50.3 \\ (1.98) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 47.6 \\ (1.87) \end{array}$	$\begin{array}{\|c\|} \hline 63.0 \\ (2.48) \end{array}$	$\begin{array}{\|c} \hline 56.0 \\ (2.20) \end{array}$	$\begin{array}{\|l\|} \hline 174.6 \\ (6.87) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 19.0 \\ (0.75) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ (0.41) \\ \hline \end{array}$	$\begin{gathered} \hline 19.0 \\ (0.75) \\ \hline \end{gathered}$	3/8"-16 UNC (M10)	$\begin{array}{\|c\|} \hline 20.0 \\ (0.79) \\ \hline \end{array}$
08	$\begin{gathered} 60.0 \\ (2.36) \end{gathered}$	$\begin{array}{\|c\|} \hline 26.2 \\ (1.03) \end{array}$	$\begin{aligned} & 188.0 \\ & (7.40) \end{aligned}$	$\begin{gathered} 29.0 \\ (1.14) \end{gathered}$	$\begin{array}{\|c\|} \hline 26.2 \\ (1.03) \end{array}$	$\begin{array}{\|l\|} \hline 103.0 \\ (4.06) \end{array}$	$\begin{array}{\|c\|} \hline 47.0 \\ (1.85) \end{array}$	$\begin{array}{\|c\|} \hline 52.4 \\ (2.06) \end{array}$	$\begin{array}{\|l\|} \hline 150.0 \\ (5.91) \end{array}$	$\begin{gathered} 55.8 \\ (2.20) \end{gathered}$	$\begin{array}{\|c\|} \hline 52.4 \\ (2.06) \end{array}$	$\begin{gathered} 65.0 \\ (2.56) \end{gathered}$	$\begin{array}{\|c\|} \hline 58.0 \\ (2.28) \end{array}$	$\begin{array}{l\|} \hline 177.0 \\ (6.97) \end{array}$	$\begin{gathered} 25.0 \\ (0.98) \end{gathered}$	$\begin{array}{\|c\|} \hline 10.5 \\ (0.41) \end{array}$	$\begin{gathered} 25.0 \\ (0.98) \end{gathered}$	3/8"-16 UNC (M10)	$\begin{gathered} \hline 23.0 \\ (0.91) \end{gathered}$
10	$\begin{gathered} \hline 75.0 \\ (2.95) \end{gathered}$	$\begin{array}{\|c\|} \hline 30.2 \\ (1.19) \end{array}$	$\begin{array}{\|l\|} \hline 198.0 \\ (7.80) \end{array}$	$\begin{gathered} \hline 34.5 \\ (1.36) \end{gathered}$	$\begin{array}{\|c\|} \hline 30.2 \\ (1.19) \end{array}$	$\begin{aligned} & 113.0 \\ & (4.45) \end{aligned}$	$\begin{array}{\|c\|} \hline 64.0 \\ (2.52) \end{array}$	$\begin{array}{\|c\|} \hline 58.7 \\ (2.31) \end{array}$	$\begin{array}{\|l\|} \hline 160.0 \\ (6.30) \end{array}$	$\begin{array}{\|c\|} \hline 57.8 \\ (2.28) \end{array}$	$\begin{array}{\|c\|} \hline 58.7 \\ (2.31) \end{array}$	$\begin{gathered} \hline 61.0 \\ (2.40) \end{gathered}$	$\begin{array}{\|c\|} \hline 62.0 \\ (2.44) \end{array}$	$\begin{array}{\|l\|} \hline 179.1 \\ (7.05) \end{array}$	$\begin{array}{\|c} \hline 32.0 \\ (1.26) \end{array}$	$\begin{array}{\|c\|} \hline 12.5 \\ (0.49) \end{array}$	$\begin{gathered} \hline 32.0 \\ (1.26) \end{gathered}$	$\begin{gathered} \text { 7/16"-14 UNC } \\ \text { (M12) } \end{gathered}$	$\begin{array}{\|c\|} \hline 22.0 \\ (0.87) \end{array}$
12	$\begin{gathered} \hline 80.0 \\ (3.15) \end{gathered}$	$\begin{array}{\|c\|} \hline 35.7 \\ (1.41) \end{array}$	$\begin{aligned} & \hline 225.0 \\ & (8.86) \end{aligned}$	$\begin{array}{c\|} \hline 34.0 \\ (1.34) \end{array}$	$\begin{array}{c\|} \hline 35.7 \\ (1.41) \end{array}$	$\begin{aligned} & \hline 140.0 \\ & (5.51) \end{aligned}$	$\begin{array}{\|c\|} \hline 73.0 \\ (2.87) \end{array}$	$\begin{array}{\|c\|} \hline 69.8 \\ (2.75) \end{array}$	$\begin{array}{\|l\|} \hline 187.0 \\ (7.36) \end{array}$	$\begin{array}{\|c\|} \hline 37.3 \\ (1.47) \end{array}$	$\begin{array}{\|c\|} \hline 69.8 \\ (2.75) \end{array}$	$\begin{array}{\|c\|} \hline 92.5 \\ (3.64) \end{array}$	$\begin{array}{\|c\|} \hline 55.2 \\ (2.17) \end{array}$	$\begin{array}{\|l\|} \hline 186.8 \\ (7.35) \end{array}$	$\begin{gathered} \hline 38.0 \\ (1.50) \end{gathered}$	$\begin{array}{\|c\|} \hline 13.5 \\ (0.53) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 38.0 \\ (1.50) \end{array}$	1/2"-13 UNC (M12)	$\begin{array}{\|c\|} \hline 27.0 \\ (1.06) \end{array}$

SAE 62

Size	B1	B2	H1	H2	H3	H4	H5	H6	L1	L2	L3		L5	d1		d3		
06	$\begin{array}{\|c} \hline 60.0 \\ (2.36) \end{array}$	$\begin{array}{\|c} \hline 23.8 \\ (0.94) \end{array}$		$\begin{array}{\|c} \hline 28.0 \\ (1.10) \end{array}$	$\begin{array}{\|c} \hline 23.8 \\ (0.94) \end{array}$	$\begin{array}{\|c} \hline 81.0 \\ (3.19) \end{array}$	$\begin{array}{\|c\|} \hline 41.6 \\ (1.64) \end{array}$	$\begin{array}{\|c} \hline 50.8 \\ (2.00) \end{array}$	$\begin{array}{\|c} \hline 50.3 \\ (1.98) \end{array}$	$\begin{array}{\|c} \hline 50.8 \\ (2.00) \end{array}$	$\begin{array}{\|c\|} \hline 63.0 \\ (2.48) \end{array}$	$\begin{array}{\|c} 56.0 \\ (2.20) \end{array}$	$\begin{aligned} & 152.0 \\ & (5.98) \end{aligned}$	$\begin{array}{\|c\|} \hline 19.0 \\ (0.75) \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ (0.41) \end{array}$	$\begin{array}{\|c} \hline 19.0 \\ (0.75) \end{array}$	3/8"-16 UNC (M10)	$\begin{array}{\|c} \hline 20.0 \\ (0.79) \end{array}$
08	(2.36)	(1.09)		(1.14)	$\begin{array}{\|c} 27.8 \\ (1.09) \end{array}$	(4.06)	(1.85)	$\mid(2.25)$	(2.20)	(2.25)	(2.56)	(2.28)	$\begin{aligned} & 149.0 \\ & (5.87) \end{aligned}$	$\begin{array}{\|c\|} \hline 25.0 \\ (0.98) \end{array}$	$\begin{array}{\|c\|} \hline 12.5 \\ (0.49) \end{array}$	$\begin{gathered} 25.0 \\ (0.98) \end{gathered}$	7/16"-14 UNC (M12)	$\begin{array}{\|c} \hline 22.0 \\ (0.87) \end{array}$
10	(2.95)	(1.25)	(5.94)	(1.36)	$\begin{array}{\|c} \hline 31.8 \\ (1.25) \end{array}$	(4.45)	(2.52)	(2.63)	(2.28)	(2.63)	(2.40)	(2.44)	$\begin{aligned} & 150.5 \\ & (5.93) \end{aligned}$	$\begin{array}{\|l} \hline 32.0 \\ (1.26) \end{array}$	$\begin{array}{\|c} \hline 13.5 \\ (0.53) \end{array}$	$\begin{gathered} 32.0 \\ (1.26) \end{gathered}$	2"-13 UNC (M12)	$\begin{array}{\|c\|} \hline 24.0 \\ (0.94) \end{array}$
12	$\begin{array}{\|c} 80.0 \\ (3.15) \end{array}$	$\begin{array}{\|c} \hline 36.5 \\ (1.44) \end{array}$	$\begin{aligned} & 178.0 \\ & (7.01) \end{aligned}$	$\begin{array}{\|c\|} \hline 34.0 \\ (1.34) \end{array}$	$\begin{array}{\|c\|} \hline 36.5 \\ (1.44) \end{array}$	(5.51)	(2.87)	(3.13)	$\begin{gathered} \hline 37.3 \\ (1.47) \end{gathered}$	$\begin{array}{\|c\|} \hline 79.4 \\ (3.13) \end{array}$	$\begin{gathered} 92.5 \\ (3.64) \end{gathered}$	(2.17)	$\begin{aligned} & 171.2 \\ & (6.74) \end{aligned}$	$\begin{array}{\|c\|} \hline 38.0 \\ (1.50) \end{array}$	$\begin{array}{c\|} \hline 17.0 \\ (0.67) \end{array}$	$\begin{array}{\|c\|} \hline 38.0 \\ (1.50) \end{array}$	5/8"-11 UNC (M16)	$\begin{gathered} \hline 33.0 \\ (1.30) \end{gathered}$

Port	Function	Port Size			
		R5V06	R5V08	R5V10	R5V12
A (2)	Pressure	$3 / 4^{\prime \prime}$ SAE61/62	$1^{\prime \prime}$ SAE61/62	$1-1 / 4^{\prime \prime}$ SAE61/62	$1-1 / 2^{\prime \prime}$ SAE61/62
B	Tank	$3 / 4^{\prime \prime}$ SAE61/62	$1^{\prime \prime}$ SAE61/62	$1-1 / 4^{\prime \prime}$ SAE61/62	$1-1 / 2^{\prime \prime}$ SAE61/62
Y1	External Drain	G1/4"			
M	Pressure Gauge	$\mathbf{G H}^{\prime \prime}$			

Seal Kits		
Size	Nitrile	Fluorocarbon
06	S16-91850-0	S16-91850-5
08	S16-91851-0	S16-91851-5
10	S16-91852-0	S16-91852-5
12	S26-27421-0	S26-27421-5
Prop. Section P2	S26-58473-0	S26-58473-5

* Please combine seal kit of one size with seal kit of Prop. Section P2 for complete seal kit.

General Description

Series RPDM2 pressure relief valves are direct operated proportional valves typically used as remote control valves for flow rates of below 3 LPM (0.8 GPM).

Function

When the pressure in port P exceeds the pressure setting at the solenoid, the cone opens to port T and limits the pressure in port P to the adjusted level.
The optimum performance can be achieved in combination with the digital amplifier module PCD00A-400.

Features

- Direct operated by proportional solenoid
- Very low pressure adjustment of $p_{\text {min. }}$
- MTTF $_{\text {D }}$ value 150 years
- Sandwich style NG6 / D03 mount
- 4 pressure ranges

Ordering Information

RPDM	2	
Pressure Control Valve	Size NG6 / D03	Pressure Relief
	Code Description AT A to T PT P to T	

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

Please order plugs separately. See Accessories.
【 WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
B01_Cat2550.indd, ddp, 04/19

General Description

Series VBY*K pilot operated sequence valves feature proportional adjustment and an external drain. The external drain allows application as both a sequence valve and as a pressure relief valve.

These valves can also be used as a pressure relief valve. Please observe hydraulic connection.

Features

- Proportional adjustment
- Manifold mounting acc. to ISO 5781
- External drain
- Main stage spool type valve
- Pilot stage seated type valve

Ordering Information

I WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3 -Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
B01_Cat2550.indd, ddp, 04/19

Specifications

General		
Size	NFPA D03 / NG6 / CETOP 3	NFPA D05 / NG10 / CETOP 5
Design	Proportional Pressure Valve	
Mounting Pattern	ISO 5781	
Actuation	Proportional Solenoid	
Mounting Position	Any	
Ambient Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$	
Hydraulics		
Operating Pressure, Ports	P, A 315 Bar (4500 PSI) T depresssurized	A, B 315 Bar (4500 PSI) Y depressurized
Flow	40 LPM (10.6 GPM)	160 LPM (42.3 GPM)
Pressure Ranges	64, 100, 160, 210, 315 Bar (928, 1450, 2320, 3045, 4568 PSI)	
Fluid	Hydraulic oil as per DIN 51524...51535, other on request	
Fluid Temp. $\begin{aligned} & \text { Recommended } \\ & \text { Permitted }\end{aligned}$	$\begin{gathered} +30^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}\left(+86^{\circ} \mathrm{F} \text { to }+122^{\circ} \mathrm{F}\right) \\ -20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	
Viscosity Range Recommended Permitted	30 to 50 cST / mm²/s (139 to 232 SSU) 20 to $380 \mathrm{cST} / \mathrm{mm}^{2} / \mathrm{s}$ (93 to 1761 SSU)	
Filtration	ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)	
Linearity	$\pm 3.5 \%$ at > $15 \% \mathrm{p}_{\text {nom }}$	
Repeatability	< $\pm 2 \%$	
Hysteresis	<3\%	
Response Time	$<150 \mathrm{~ms}$	$<200 \mathrm{~ms}$
Manufacturing Tolerance	$\pm 5 \%$ to $\mathrm{p}_{\text {max }}$	
Electrical		
Duty Cycle	100\% ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible	
Protection Class	IP54 at DIN 40050 (plugged and mounted)	
Nominal Voltage	9 VDC	
Maximum Current	2.5 A	
Coil Resistance	21 ohm at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$	
Plug Connectors	2 pole + PE / connector EN 175301-803 / cable Ø 8 to 10mm	
Power Amplifier	PCD00A-400	

Performance Curves - NG6

Pressure Curves where $p=f\left(U_{\text {see }}\right)$
Setting Range max. 64 Bar (928 PSI)

Step Response Signal

Setting Range max. 210 Bar (3045 PSI)

Setting Range max. 210 Bar (3045 PSI)

NG6

p / Q Performance Curves measured at $t=50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ and $\mathrm{v}=36 \mathrm{~mm}^{2} / \mathrm{s}$

Setting Range max. 64 Bar (928 PSI)

Setting Range max. 160 Bar (2320 PSI)

Setting Range max. 100 Bar (1450 PSI)

Setting Range max. 210 Bar (3000 PSI)

Setting Range max. 315 Bar (4500 PSI)

NG10

p / Q Performance Curves measured at $t=50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ and $\mathrm{v}=36 \mathrm{~mm}^{2} / \mathrm{s}$

Setting Range max. 64 Bar (928 PSI)

Setting Range max. 160 Bar (2320 PSI)

Setting Range max. 100 Bar (1450 PSI)

Setting Range max. 210 Bar (3045 PSI)

Size NG6

Inch equivalents for millimeter dimensions are shown in (**)

Surface Finish		$\xrightarrow{2}$	Seal Nitrile Kit Fluorocarbon	
$\begin{aligned} & \hline \sqrt{\mathrm{R}_{\max } 6.3} \sqrt{\square 0.01 / 100} \\ & \hline / / / / / / / / 7 / / 7 \end{aligned}$	BK375 $4 x-M 5 \times 30$ BK209 $4 \times 10-24 \times 1.25 "$	7.5 Nm (5.5 lb.-ft.)	SK-VMY-L06-N	SK-VMY-L06-V

Mounting Pattern ISO 5781-03-04-0-00

Inch equivalents for millimeter dimensions are shown in (**)

Size NG10

Inch equivalents for millimeter dimensions are shown in (**)

Surface Finish	Bolt Kit 冒) DIN912 12.9	S	Seal Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}, \square 0.01 / 100}{7 / 7 / / 1 / 7 / 1 / 7}$	$\begin{aligned} & \hline \text { BK389 } \\ & \text { BK242 } \end{aligned}$	$\begin{aligned} & 4 \times M 10 \times 50 \\ & 4 \times 3 / 8-16 \times 2 \end{aligned}$	65 Nm (47.9 lb.-ft.)	Nitrile: SK-VB/VM-A10 Fluorocarbon: SK-VB/VM-A10V

Mounting Pattern ISO 5781-06-07-0-00
Inch equivalents for millimeter dimensions are shown in (**)

General Description

Series VMY*K valves consist of the main stage with valve spools and the pilot stage with the proportional solenoids. The desired pressure can be variably set corresponding to the command signal specified on the amplifier. The proportional solenoid converts the current of the amplifier into force on the valve poppet of the pilot stage.
In the pilot stage, there is a flow limiter which supplies the pilot valve with pressure-independent pilot oil flow from the pressure port P.
The proportional pressure reducing/relieving valves of the series $\mathrm{VMY}^{*} 06$ allow the variable adjustment of the reduced pressure from 0 bar up to $p_{\text {max }}$. Typical applications are pressure systems, test equipment, or counterweight systems. The electrical control of the valve takes place using the digital amplifier module PCD00A-400. Used in closed loop pressure control circuits with the PWDXXA-400.

Function

With the proportional solenoids de-energized the main spring forces the main spool into the neutral position. Port A is connected to port T. Thus the reduced pressure only depends on the back pressure in the external drain pipe and/or the tank pressure and can accordingly be reduced down to 0 bar. The pressure present in the P line delivers the pilot oil to the pilot stage via a flow control valve.

VMY*K06N

When the proportional solenoid is energized, the pilot pressure is increased in the pilot pressure area, and the main spool moves against the spring until the connection P-A opens. The regulation of the reduced pressure on connection A takes place by the constant comparison of the actual pressure and the reference pressure of the pilot stage.

Features

- Consistent performance
- Variable adjustment
- Pilot operated with proportional solenoid
- Subplate according to ISO 5781

VMY*K10

[^13]Catalog MSG14-2550/US
Technical Information

Prop. Pressure Reducing/Relieving Valves
Series VMY*K

Ordering Information

Weight:
$V_{M Y}{ }^{*} 06 \quad 2.8 \mathrm{~kg}(6.2 \mathrm{lbs}$.

Specifications

2) $\mathrm{p}_{\text {min }}=0 \operatorname{Bar}(0 \mathrm{PSI})$ possible

General		
Design	Proportional Reducing/Relieving Valve	
Size	NFPA D03 / CETOP 3 / DIN NG6	DIN NG10
Mounting Pattern	ISO 5781	
Actuation	Proportional Solenoid	
Mounting Position	Any	
Ambient Temperature	$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$	
Hydraulics		
Operating Pressure, Ports	Ports P, A 315 Bar (4500 PSI) Ports T, Y depressurized; Port B has to be blocked	Ports A, B 350 Bar (5075 PSI) Port Y depressurized; Port X has to be blocked
Flow	40 LPM (10.6 GPM)	160 LPM (42.2 GPM)
Pilot Flow	0.3-0.4 LPM (.08-.011 GPM), not dependent on pressure	
Pressure Ranges	64, 100, 160, 210, 315 Bar (928, 1450, 2320, 3045, 4568 PSI)	
Fluid	Hydraulic oil as per DIN 51524...51535, other on request	
Fluid Temperature Recommended Permitted	$\begin{gathered} +30^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}\left(+86^{\circ} \mathrm{F} \text { to }+122^{\circ} \mathrm{F}\right) \\ -20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F}\right) \end{gathered}$	
Viscosity Recommended Permitted	30 to $50 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}$ (139 to 232 SSU)20 to $380 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}(93$ to 1761 SSU)	
Filtration	ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)	
Linearity	See Performance Curves	± 3.5 at $>15 \% \mathrm{p}_{\text {nom }}$
Repeatability	< $\pm 2 \%$	
Hysteresis	<3\%	
Response Time	$<150 \mathrm{~ms}$	$<200 \mathrm{~ms}$
Electrical		
Duty Cycle	100\% ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible	
Protection Class	IP65 in accordance with EN 60529 (plugged and mounted)	
Nominal Voltage	9 VDC	
Maximum Current	2.5 A	
Ambient Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$	
Coil Resistance	2.1 ohm at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$	
Plug Connectors	2 pole + PE / connector EN 175301-803 / cable $\varnothing 8$ to 10mm	
Power Amplifier	PCD00A-400	

B01_Cat2550.indd, ddp, 04/19

Prop. Pressure Reducing/Relieving Valves Series VMY*K06

Presssure Curves where $p=f\left(U_{\text {sel }}\right)$

Setting Range max. 64 Bar (928 PSI)

Setting Range max. 210 Bar (3045 PSI)

Step Response

Typical Curve

Accumulator Plate H06VMY-1350

Inch equivalents for millimeter dimensions are shown in (**)

Performance Curves

Prop. Pressure Reducing/Relieving Valves Series VMY*K06
p / Q Performance Curves measured at $t=50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ and $\mathrm{v}=35 \mathrm{~mm}^{2} / \mathrm{s}$.

Setting Range max. 64 Bar (928 PSI)

Setting Range max. 160 Bar (2320 PSI)

Setting Range max. 100 Bar (1450 PSI)

Setting Range max. 210 Bar (3045 PSI)

Setting Range max. 315 Bar (4568 PSI)

p/Q Performance Curves for pilot oil supply from high pressure channel P, measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Setting Range max. 64 Bar (928 PSI)

Setting Range max. 160 Bar (2320 PSI)

Setting Range max. 100 Bar (1450 PSI)

Setting Range max. 210 Bar (3045 PSI)

Size NG6

Inch equivalents for millimeter dimensions are shown in (**)

Surface Finish	Bolt kit 呺 DIN912 12.9	5	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\text {max }} 6.3}-\sqrt{\square 0.01 / 100}}{1 / / / / 1 / 1 / 1 / 1 /}$	$\begin{aligned} & \text { BK209 (4) 10-24×1.25 } \\ & \text { BK375 (4) M5×30 } \end{aligned}$	7.5 Nm (5.5 lb.-ft.)	Fluorocarbon: SK-VB/VM-A06V

Mounting Pattern ISO 5781-03-04-0-00

Dimensions

Prop. Pressure Reducing/Relieving Valves Series VMY*K10

Size NG10

Inch equivalents for millimeter dimensions are shown in (**)

Surface Finish	Bolt kit 呈巩 DIN912 12.9	5	Seal \bigcirc Kit
$\frac{\sqrt{R_{\max } 6.3}-\square 0.01 / 100}{1 / 7 / 1 / 7 / 1 / 1 /}$	BK153 (4) 3/8-16x2 BK242 (4) M10x50	63 Nm (5.5 lb.-ft.)	Nitrile: SK-VB/VM-A10 Fluorocarbon: SK-VB/VM-A10V

Mounting Pattern ISO 5781-06-07-0-00

Inch equivalents for millimeter dimensions are shown in (**)

General Description

Series D1FV proportional pressure reducing valves are available with and without onboard electronics (OBE).

D1FV OBE

The digital onboard electronics is situated in a robust metal housing, which allows the usage under rough environmental conditions.

The nominal values are factory set. The cable for connection to a serial RS-232 interface is available as accessory.

D1FV for External Electronics

The parameters can be saved, changed and duplicated in combination with the digital power amplifier PWD00A-400. The value parameters can be edited with the common ProPxD software for both versions.

The D1FV values control the pressure in the A- or B-ports using the barometric feedback principle.

Features

- Barometric feedback
- 3 command options for D1FV OBE: $\pm 10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$, $\pm 20 \mathrm{~mA}$
- High repeatability from valve to valve
- Low hysteresis
- Manual override
- Pressure ranges 25 Bar (363 PSI) and 45 Bar (653 PSI)

D1FV*3 OBE

D1FV OBE

Function C

Function K

[^14]
D1FV Offboard Electronics

D1FV Onboard Electronics

Bolt Kit:

BK209
(4) $10-24 \times 1.25$

BK375
(4) $\mathrm{M} 5 \times 30$

Weight: Onboard
D1FV 2.9 kg (6.4 lbs .)
Please order plugs separately. See Accessories.

[^15]Parametrizing cable OBE => RS-232
Item no. 40982923

General	
Design	Direct operated proportional pressure reducing valve
Actuation	Proportional solenoid
Size	NG6 / CETOP 3 / NFPA D03
Mounting Interface	DIN 24340 / ISO 4401 / CETOP RP121 / NFPA
Mounting Position	Unrestricted
Ambient Temperature [$\left.{ }^{\circ} \mathrm{C}\right]$	$-20 . . .+40 ;\left(-{ }^{\circ} \mathrm{F} . . .+104^{\circ} \mathrm{F}\right)$
MTTF $_{\text {D }}$ Value [years]	150 (75)
Vibration Resistance [g]	10 Sinus 5 ... 2000 Hz acc. IEC 68-2-6 30 Random noise $20 . . .2000 \mathrm{~Hz}$ acc. IEC 68-2-36 15 Shock acc. IEC 68-2-27
Hydraulic	
Maximum Operating Pressure	Ports P, A, B 350 Bar (5075 PSI) Port T 185 Bar (2683 PSI)
Maximum Pressure Drop PABT / PBAT	350 Bar (5075 PSI)
Fluid	Hydraulic oil as per DIN 51524...51535, other on request
Fluid Temperature [${ }^{\circ} \mathrm{C}$]	$-20 \ldots+40$ (-4 $\left.{ }^{\circ} \mathrm{F} . . .+104^{\circ} \mathrm{F}\right)$
Viscosity Permitted Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	$\begin{aligned} & \text { 20... } 380 \text { (93... } 1761 \text { SSU) } \\ & 30 . . .80 \text { (139... } 371 \text { SSU) } \end{aligned}$
Filtration	ISO 4406 (1999) 18/16/13 (acc. NAS 1638:7)
Maximum Flow	10 LPM (2.6 GPM)
Minimum Primary Pressure	30 Bar (435 PSI)
Static / Dynamic	
Hysteresis [\%]	<4
Temperature Drift Solenoid Current$\quad[\% / K]$	<0.02
Electrical	
Duty Ratio [\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}$ ($302^{\circ} \mathrm{F}$) possible
Protection Class	Standard (as per EN175301-803) IP65 in accordance with EN60529 (with correctly mounted plug-in connector); DT04-2P "Deutsch" IP69K (with correctly mounted plug-in connector)
Supply Voltage [V]	12
Current Consumption [A]	2.2
Resistance [Ohm]	4.4
Coil Insulation Class	$\mathrm{F}\left(155{ }^{\circ} \mathrm{C}\right)\left(311{ }^{\circ} \mathrm{F}\right)$
Solenoid Connection	Connector as per EN 175301-803 (code W), DT04-2P "Deutsch" connector (code J). Solenoid identification as per ISO 9461.
Wiring Minimum [mm²]	3x1.5 (AWG 16) overall braid shield (Code W), "Deutsch" connector DP4 2-Pin (Code J)
Wiring Length Maximum [m]	50 (164 ft.) recommended

With electrical connections the protective conductor ($\mathrm{PE} \stackrel{\perp}{\Xi}$) must be connected according to the relevant regulations.

Electrical Specifications

Electrical		
Duty Ratio	[\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible
Protection Class		IP65 in accordance with EN 60529 (plugged and mounted)
Supply Voltage/ripple DC	[V]	$18 . .30$, ripple < 5% eff., surge free
Current Consumption Maximum	[A]	2.0
Pre-fusing Medium Lag	[A]	2.5
Input Signal Codes F0 \& W5 Voltage Code MO Voltage Codes S0 \& W5 Current Code Go	[V] [mA] [mA]	$+10 \ldots 0 . . .-10$, ripple $<0.01 \%$ eff., surge free, $R i=100 \mathrm{kOhm}, 0 \ldots+10 \mathrm{~V}=>P$-> A $+10 \ldots 0 \ldots-10$, ripple $<0.01 \%$ eff., surge free, $R i=100 \mathrm{kOhm}, 0 \ldots+10 \mathrm{~V}=>P$-> B $4 . .12 \ldots . .20$, ripple $<0.01 \%$ eff., surge free, $R i=2000 \mathrm{hm}, 12 \ldots 20 \mathrm{~mA}=>P$-> A $<3.6 \mathrm{~mA}=$ enable off, $>3.8 \mathrm{~mA}=$ enable on (acc. to NAMUR NE43) $+20 \ldots 0 \ldots-20$, ripple $<0.01 \%$ eff., surge free, $\mathrm{Ri}=2000 \mathrm{hm}, 0 \ldots+20 \mathrm{~mA}=>P$-> A
Differential input max. Codes F0, G0, M0 \& S0 Code W5	[V] [V]	30 for terminal D and E against PE (terminal G) 11 for terminal D and E against OV (terminal B) 30 for terminal 4 and 5 against PE (terminal PE) 11 for terminal 4 and 5 against $0 V$ (terminal 2)
Channel Recall Signal	[V]	0...2.5: off / 5...30: on / Ri = 100 kOhm
Adjustment Ranges: Min Max Ramp	[\%] [\%] [s]	$\left\lvert\, \begin{aligned} & 0 . . .50 \\ & 50 . . .100 \\ & 0 . . .32 .5 \end{aligned}\right.$
Interface		RS-232, parametrizing connection 5 pole
EMC		EN 61000-6-2, EN 61000-6-4
Central Connection Codes F0, GO M0 \& SO Code W5		6 + PE acc. to EN 175201-804 11 + PE acc. to EN 175201-804
Wiring Minimum Codes F0, GO MO \& S0 Code W5	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {\left[\mathrm{mm}^{2}\right]} \end{aligned}$	7×1.0 (AWG16) overall braid shield 11×1.0 (AWG16) overall braid shield
Wiring Length Maximum	[m]	50 (164 ft.)

Performance Curves

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.
B01_Cat2550.indd, ddp, 04/19

Catalog MSG14-2550/US
Block Diagrams - Wiring

Proportional Pressure Relief Valves Series D1FV

Code FO, MO

6 + PE acc. to EN 175201-804

0

Code G0, S0
6 + PE acc. to EN 175201-804

Code W5
11 + PE acc. to EN 175201-804

Proportional Pressure Relief Valves
 Series D1FV

ProPxD Interface Program

The ProPxD software allows quick and easy setting of the digital valve electronics. Individual parameters as well as complete settings can be viewed, changed and saved via the comfortable user interface. Parameter sets saved in the non-volatile memory can be loaded to other valves of the same type or printed out for documentation purposes.

Features

- Simple editing of all parameters.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR} 95$ upwards.
- Communication between PC and electronics via serial interface RS-232.
The valve electronics cannot be connected to a PC with a standard USB cable - this can result in damages of PC and/or valve electronics.
Simple to use interface program. Download free of charge www.parker.com/euro_hcd \rightarrow Services \rightarrow downloads

The parametrizing cable may be ordered under item no. 40982923.

Inch equivalents for millimeter dimensions are shown in (**)

D1FV* ${ }^{*}$
with DT04-2P "Deutsch" Connector

D1FV*E

Surface Finish	包 Kit	的 ${ }^{\text {k }}$	$\xrightarrow{\square}$	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}-\square 0.01 / 100}{1 / 7 / 1 / 7 / 1 / 1 /}$	BK375	$\begin{gathered} \text { 4x M5x30 } \\ \text { DIN } 91212.9 \end{gathered}$	$\begin{gathered} \text { 7.6 Nm (5.6 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile: SK-D1FB-N Fluorocarbon: SK-D1FBV

Inch equivalents for millimeter dimensions are shown in (**)

D1FV*C OBE

D1FV*E OBE

D1FV*K OBE

Surface Finish	包 Kit	射 $\mathrm{K}^{\text {c }}$	S	Seal \bigcirc Kit
$\frac{\sqrt{\mathrm{R}_{\max } 6.3}-\square 0.01 / 100}{1 / 7 / 1 / / / 1 / 1 /}$	BK375	$\begin{gathered} 4 \times \mathrm{M} 5 \times 30 \\ \text { DIN } 91212.9 \end{gathered}$	$\begin{gathered} \text { 7.6 Nm (5.6 lb.-ft.) } \\ \pm 15 \% \end{gathered}$	Nitrile: SK-D1FB-N Fluorocarbon: SK-D1FBV

General Description

Series R4R*P2 subplate mounted proportional pressure reducing valves have a proportional solenoid operated pilot stage and a cartridge main stage.
The optimum performance can be achieved in combination with the digital amplifier module PCD00A-400.

Features

- Pilot operated with proportional solenoid
- Continuous adjustment by proportional solenoid
- Subplate mounting according to ISO 5781
- 3 pressure ranges
- Mechanical maximum pressure adjustment

Ordering Information

I WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
B01_Cat2550.indd, ddp, 04/19

Specifications

General			
Size	NG10	NG25	NG32
Interface	Subplate mounting acc. ISO 5781		
Mounting Position	Unrestricted, horizontal mounting preferred		
Ambient Temperature [${ }^{\circ} \mathrm{C}$]	$-20 \ldots+80 ;\left(-{ }^{\circ} \mathrm{F} \ldots+176^{\circ} \mathrm{F}\right)$		
MTTF ${ }_{\text {D }}$ Value [years]	75		
Hydraulic			
Maximum Operating Pressure	Ports A, B and X 350 Bar (5075 PSI), Port Y depressurized		
Pressure Ranges	105 Bar (1523 PSI), 210 Bar (3045 PSI), 350 Bar (5075 PSI)		
Nominal Flow	150 LPM (39.7 GPM)	350 LPM (92.6 GPM)	500 LPM (132.3 PSI)
Fluid	Hydraulic oil according to DIN 51524...51535, other on request		
Viscosity Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ Permitted $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ 	$\begin{aligned} & 30 \ldots 50 \text { (139 ... } 232 \text { SSU) } \\ & 20 \ldots 38 \text { (} 93 \ldots 1761 \text { SSU) } \end{aligned}$		
Fluid Temperature [${ }^{\circ} \mathrm{C}$]	$-20 \ldots+70\left(-4^{\circ} \mathrm{F} \ldots+158^{\circ} \mathrm{F}\right)$		
Filtration	ISO 4406 (1999) 18/16/13 (acc. NAS 1638: 7)		
Electrical			
Duty Ratio [\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}$ ($302^{\circ} \mathrm{F}$) possible		
Protection Class	IP65 in accordance with EN 60529 (plugged and mounted)		
Nominal Voltage [V]	12		
Maximum Current [A]	2.3		
Coil Resistance [Ohm]	4 at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$		
Solenoid Connection	Connector as per EN 175301-803, Solenoid identificaton as per ISO9461		
Power Amplifier, Recommended	PCD00A-400		

Performance Curves

Proportional Pressure Relief Valves Series R4R*P2 (Subplate Mounted)

R4R03*P2 ${ }^{1)}$

R4R06*P2 ${ }^{1)}$

R4R10*P2 ${ }^{1)}$

[^16]

๑ロ

Inch equivalents for millimeter dimensions are shown in (**)

NG	ISO-Code	x1	x2	x3	x4	x5	x6	x7	y1	y2	y3	y4	y5	y6
10	5781-06-07-0-00	$\begin{gathered} \hline 42.9 \\ (1.69) \end{gathered}$	$\begin{gathered} 35.8 \\ (1.41) \end{gathered}$	$\begin{gathered} \hline 21.5 \\ (0.85) \end{gathered}$	-	$\begin{gathered} 7.2 \\ (0.28) \end{gathered}$	-	$\begin{gathered} 31.8 \\ (1.25) \end{gathered}$	$\begin{gathered} 66.7 \\ (2.63) \end{gathered}$	-	$\begin{gathered} 33.4 \\ (1.31) \end{gathered}$	$\begin{gathered} 7.9 \\ (0.31) \end{gathered}$	-	-
25	5781-08-10-0-00	$\begin{gathered} 60.3 \\ (2.37) \\ \hline \end{gathered}$	$\begin{gathered} 49.2 \\ (1.94) \\ \hline \end{gathered}$	$\begin{gathered} 39.7 \\ (1.56) \\ \hline \end{gathered}$	-	$\begin{gathered} \hline 11.1 \\ (0.44) \\ \hline \end{gathered}$	-	$\begin{gathered} 44.5 \\ (1.75) \\ \hline \end{gathered}$	$\begin{array}{r} 79.4 \\ (3.13) \\ \hline \end{array}$	-	$\begin{gathered} 39.7 \\ (1.56) \end{gathered}$	$\begin{gathered} 6.4 \\ (0.25) \\ \hline \end{gathered}$	-	-
32	5781-10-13-0-00	$\begin{gathered} \hline 84.2 \\ (3.31) \\ \hline \end{gathered}$	$\begin{gathered} \hline 67.5 \\ (2.66) \\ \hline \end{gathered}$	$\begin{gathered} \hline 59.5 \\ (2.34) \\ \hline \end{gathered}$	$\begin{gathered} \hline 42.1 \\ (1.66) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16.7 \\ (0.66) \\ \hline \end{gathered}$	-	$\begin{gathered} \hline 62.7 \\ (2.47) \\ \hline \end{gathered}$	$\begin{gathered} 96.8 \\ (3.81) \\ \hline \end{gathered}$	-	$\begin{gathered} \hline 48.4 \\ (1.91) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.8 \\ (0.15) \\ \hline \end{gathered}$	-	-

Tolerance at X and Y pin holes and screw holes ± 0.1, at port holes ± 0.2.

NG	ISO-Code	B1	B2	B3	H1	H2	H3	H4	L1	L2	L3	L4	L5	L6	L7
10	5781-06-07-0-00	$\begin{gathered} \hline 87.3 \\ (3.44) \\ \hline \end{gathered}$	$\begin{gathered} \hline 33.4 \\ (1.31) \\ \hline \end{gathered}$	$\begin{gathered} \hline 71.0 \\ (2.80) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 134.0 \\ & (5.28) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 21.0 \\ (0.83) \\ \hline \end{gathered}$	$\begin{gathered} \hline 68.5 \\ (2.70) \\ \hline \end{gathered}$	$\begin{aligned} & 109.5 \\ & (4.31) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 25.0 \\ (98.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 90.8 \\ (3.57) \\ \hline \end{gathered}$	$\begin{gathered} \hline 60.8 \\ (2.38) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 143.0 \\ & (5.63) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 144.8 \\ & (5.70) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 164.0 \\ & (6.49) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 38.6 \\ (1.52) \\ \hline \end{gathered}$
25	5781-08-10-0-00	$\begin{aligned} & 105.0 \\ & (4.13) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 39.7 \\ (1.56) \\ \hline \end{gathered}$	$\begin{gathered} \hline 71.0 \\ (2.80) \\ \hline \end{gathered}$	$\begin{aligned} & 158.5 \\ & (6.24) \\ & \hline \end{aligned}$	$\begin{gathered} 29.0 \\ (1.14) \\ \hline \end{gathered}$	$\begin{gathered} \hline 95.0 \\ (3.74) \\ \hline \end{gathered}$	$\begin{array}{r} 136.0 \\ (5.35) \\ \hline \end{array}$	$\begin{gathered} 30.9 \\ (1.22) \\ \hline \end{gathered}$	$\begin{aligned} & 123.0 \\ & (4.84) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60.8 \\ (2.38) \\ \hline \end{gathered}$	$\begin{aligned} & 143.0 \\ & (5.63) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 144.8 \\ & (5.70) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 164.0 \\ & (6.49) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 38.6 \\ (1.52) \\ \hline \end{gathered}$
32	5781-10-13-0-00	$\begin{aligned} & 120.0 \\ & (4.72) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 48.4 \\ (1.91) \\ \hline \end{gathered}$	$\begin{gathered} 71.0 \\ (2.80) \end{gathered}$	$\begin{aligned} & 171.0 \\ & (6.73) \end{aligned}$	$\begin{array}{r} 30.0 \\ (1.18) \\ \hline \end{array}$	$\begin{aligned} & 105.5 \\ & (4.15) \\ & \hline \end{aligned}$	$\begin{array}{r} 146.5 \\ (5.77) \end{array}$	$\begin{gathered} 29.8 \\ (1.17) \end{gathered}$	$\begin{aligned} & 143.5 \\ & (5.65) \end{aligned}$	$\begin{gathered} \hline 60.8 \\ (2.38) \\ \hline \end{gathered}$	$\begin{aligned} & 143.0 \\ & (5.63) \\ & \hline \end{aligned}$	$\begin{array}{r} 144.8 \\ (5.70) \\ \hline \end{array}$	$\begin{aligned} & 164.0 \\ & (6.49) \\ & \hline \end{aligned}$	$\begin{gathered} 38.6 \\ (1.52) \\ \hline \end{gathered}$

NG	ISO-Code	d1max	d2max	d3	t3	d4	t4	d5	d6	Subplate
10	5781-06-07-0-00	$\begin{gathered} 15.0 \\ (0.59) \end{gathered}$	$\begin{gathered} 7.0 \\ (0.28) \end{gathered}$	$\begin{gathered} 7.1 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ (0.31) \end{gathered}$	M10	$\begin{gathered} 16.0 \\ (0.63) \\ \hline \end{gathered}$	$\begin{gathered} 10.8 \\ (0.43) \end{gathered}$	$\begin{gathered} 17.0 \\ (0.67) \end{gathered}$	SPP3M6B910
25	5781-08-10-0-00	$\begin{gathered} 23.4 \\ (0.92) \\ \hline \end{gathered}$	$\begin{gathered} 7.1 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.1 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (0.31) \\ \hline \end{gathered}$	M10	$\begin{gathered} \hline 18.0 \\ (0.71) \\ \hline \end{gathered}$	$\begin{gathered} 10.8 \\ (0.43) \\ \hline \end{gathered}$	$\begin{gathered} 17.0 \\ (0.67) \\ \hline \end{gathered}$	SPP6M8B910
32	5781-10-13-0-00	$\begin{gathered} 32.0 \\ (1.26) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.1 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.1 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (0.31) \\ \hline \end{gathered}$	M10	$\begin{gathered} 20.0 \\ (0.79) \\ \hline \end{gathered}$	$\begin{array}{r} 10.8 \\ (0.43) \\ \hline \end{array}$	$\begin{gathered} \hline 17.0 \\ (0.67) \\ \hline \end{gathered}$	SPP10M12B910

NG	ISO-Code	Bolt Kit	邑	$\stackrel{5}{2}$	Seal \bigcirc Kit		Surface Finish
					Nitrile	Fluorocarbon	
10	5781-06-07-0-00	BK505	4x M10 x 35 DIN912 12.9	$\begin{gathered} 63 \mathrm{Nm}(46.5 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	S26-58507-0*	S26-58507-5*	
25	5781-08-10-0-00	BK485	4x M10 x 45 DIN912 12.9	$\begin{gathered} \hline 63 \mathrm{Nm} \text { (46.5 lb.-ft.) } \\ \pm 15 \% \\ \hline \end{gathered}$	S26-58475-0*	S26-58475-5*	$\frac{\sqrt{\mathrm{R}_{\max } 6.3} \sqrt{\square 0.01 / 100}}{1 / 1 / 1 / 1 / 1 / 1 /}$
32	5781-10-13-0-00	BK506	6x M10 x 45 DIN912 12.9	$\begin{gathered} \hline 63 \mathrm{Nm}(46.5 \mathrm{lb} .-\mathrm{ft} .) \\ \pm 15 \% \end{gathered}$	S26-58508-0*	S26-58508-5*	
Prop. Section P2					S26-58473-0	S26-58473-5	

* Please combine seal kit of one size with seal kit of Prop. Section P2 for complete seal kit

General Description

Series R4R*P2 proportional pressure reducing valves are based on the mechanically adjusted Series R4R. The additional proportional unit between the mechanical pilot valve and the main stage allows continuous pressure adjustment.
The optimum performance can be achieved in combination with the digital amplifier module PCD00A-400.

Features

- Pilot operated with proportional solenoid
- Normally closed to avoid undesired motion
- Continuous adjustment by proportional solenoid
- 2 interfaces:
- L-body (R4R06-G3/4", R4R10-G1-1/4") BSPP
- T-body (R4R03-G1/2", R4R06-G1") BSPP
- 4 sizes (SAE 1/2", 3/4", 1", 1-1/4")
- 3 pressure ranges
- With mechanical maximum pressure adjustment

Ordering Information

[^17]
Specifications

General				
Size	T-Body		L-Body	
	03 (1/2")	06 (1")	06 (3/4")	10 (1-1/4")
Mounting	Threaded Body			
Mounting Position	Unrestricted			
Ambient Temperature Range	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$			
MTTF $_{\text {D }}$ Value	75 years			
Hydraulic				
Max. Operating Pressure	Ports A, B and X 350 Bar (5075 PSI); Port Y depressurized			
Pressure Ranges	105 Bar (1523 PSI), 210 Bar (3045 PSI), 350 Bar (5075 PSI)			
Nominal Flow	60 LPM (15.9 GPM)	200 LPM (52.9 GPM)	200 LPM (52.9 GPM)	450 LPM (119.0 GPM)
Fluid	Hydraulic oil as per DIN 51524...51535, other on request			
Fluid Temperature	$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$			
Viscosity Permitted Recommended	10 to $380 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}(46$ to 1761 SSU$)$30 to $80 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}$ (139 to 371 SSU)			
Filtration	ISO Class 4406 (1999) 18/16/13 (acc. NAS 1638: 7)			
Electrical (Proportional Solenoid)				
Duty Ratio	100\% ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible			
Nominal Voltage	12 VDC			
Maximum Current	2.3 amps			
Coil Resistance	4 Ohm at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$			
Solenoid Connection	Connector as per EN175301-803, Solenoid identificaton as per ISO9461			
Protection Class	IP65 in accordance with EN60529 (plugged and mounted)			
Power Amplifier	PCD00A-400			

Performance Curves

R4R06*P2 ${ }^{1)}$

R4R10*P2 ${ }^{1)}$

[^18]Inch equivalents for millimeter dimensions are shown in (**)

T-Body

Size	Body	B1	H1	H2	H3	H4	L1	L2
03	T-Body	85.0	27.5	59.5	144.5	106.5	53.0	92.0
		(3.35)	(1.08)	(2.34)	(5.69)	(4.19)	(2.09)	(3.62)
06	T-Body	136.0	38.0	93.0	178.0	140.0	66.5	117.5
		(5.35)	(1.50)	(3.66)	(7.01)	(5.51)	(2.62)	(4.63)

Port	Punction	Port Size	
		R4R03*P2 T-Body	R4R06*P2 T-Body
B	Inlet Pressure	G1/2"	G1"
A	Outlet Pressure	G1/2"	G1"
X1*	External Remote Control or Vent Connection		G1/4"
Y1	External Drain		

[^19]Inch equivalents for millimeter dimensions are shown in (**)
L-Body

Seal Kits		
Size	Nitrile	Fluorocarbon
06	S26-58475-0	S26-58475-5
10	S26-58508-0	S26-58508-5
Prop. Section P2*	S26-58473-0	S26-58473-5

* Please combine seal kit of one size with seal kit of Prop. Section P2 for complete seal kit.

Size	Body	B2	B3	H6	H7	H8	H9	L3
06	L-Body	81.0	76.0	51.0	81.0	166.0	128.0	49.0
		(3.19)	(2.99)	(2.01)	(3.19)	(6.54)	(5.04)	(1.93)
10	L-Body	120.7	85.8	50.8	96.0	181.0	143.0	49.8
		(4.75)	(3.38)	(2.00)	(3.78)	(7.13)	(5.63)	(1.96)

Port	Function	Port Size	
		R4R06*P2 L-Body	R4R10*P2 L-Body
B	Inlet Pressure	G3/4"	G1-1/4"
A	Outlet Pressure	G3/4"	G1-1/4"
X1*	External Remote Control or Vent Connection		G1/4"
Y1	External Drain		

[^20]
General Description

Series PRPM proportional pressure reducing valves keep a constant pressure $p_{\text {red }}$ on the secondary, or regulated, side, independent of pressure fluctuations on the primary side. The integrated pressure relief function eliminates the need for an additional pressure relief valve on the secondary side and reliefs to tank, if $\mathrm{p}_{\text {red }}$ rises above the set pressure.
The proportional pressure reducing valve reduces the
 pressure in output port $\mathrm{p}_{\text {red }}$ in proportion to the solenoid current. The PRPM works practically independent of the inlet pressure p_{E}. In non-activated mode, the connection to the tank is fully open with a min. pressure corresponding to the spring force.

The gauge port is connected to the secondary side. Types A and B have an integrated bypass check valve. The PRPM provides optimum performance in combination with a digital amplifier module PCD00A-400.

Ordering Information

Weight:

PRPM2 0.2 kg (0.4 lbs.)
PRPM3 3.2 kg (7.1 lbs.)

©

Proportional Pressure Relief Valves
Series PRPM

Specifications

General		
Size (according to ISO 4401)	NFPA D03 / NG6 / CETOP 3	NFPA D05 / NG10 / CETOP 5
Construction	Sandwich type	
Operation	Proportional solenoid	
Mounting	4 holes for socket cap screws M5 (NG10: M6) or studs M5 (NG10: M6)	
Port	Sandwich valve	
Mounting Position	Horizontal preferred	
Ambient Temperature Range	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$	
Fastening Torque	$\mathrm{M}_{\mathrm{D}}=5.5 \mathrm{Nm}(4.1 \mathrm{lb} .-\mathrm{ft}$.$) (qual. 8.8 \mathrm{Nm}$ ($\left.6.5 \mathrm{lb} .-\mathrm{ft}.\right)$ for socket cap screws $M_{D}=50 \mathrm{Nm}$ (36.9 lb.-ft.) for cartridges	$\mathrm{M}_{\mathrm{D}}=9.5 \mathrm{Nm}(7.0 \mathrm{lb} .-\mathrm{ft}$.$) (qual. 8.8$ ($\left.6.5 \mathrm{lb} .-\mathrm{ft}.\right)$ for socket cap screws $\mathrm{M}_{\mathrm{D}}=50 \mathrm{Nm}$ (36.9 lb.-ft.) for cartridges
Hydraulic		
Max. Operating Pressure	350 Bar (5075 PSI)	
Pressure Range	100 Bar (1450 PSI), 200 Bar (2900 PSI), 350 Bar (5075 PSI)	
Maximum Flow	0 to 60 LPM (0 to 15.9 GPM)	
Pilot Flow	See performance curves	
Fluid	Mineral oil (other fluid on request)	
Fluid Temperature	$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$	
Viscosity Permitted	10 to $380 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}$ (46 to 1761 SSU)	
Filtration	ISO Class 1406 16/13, to be achieved with $\beta_{6 . .10}>75$	
Resolution	1 mA	
Repeatability	$\leq 1 \%$ (with optimal dither signal)	
Hysteresis	$\leq 4 \%$ (with optimal dither signal)	
Electrical		
Solenoid	Proportional solenoid, wet-pin push type, pressure tight	
Duty Ratio	100% ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible	
Protection Class	IP65 in accordance with EN 60529	
Supply Voltage	12 VDC (1320 mA) / 24 VDC (680 mA)	
Solenoid Connection	Connector as per EN 175301-803	
Amplifier	PCD00A-400	

Performance Curves

Pressure Drop/Flow over check valve

All measures taken at viscosity $v=30 \mathrm{~mm}^{2} / \mathrm{s}$.
B01_Cat2550.indd, ddp, 04/19

Pressure/Flow (min. adjustable) $p_{\text {red }}=f(Q)$

* Backpressure depends on system

* Backpressure depends on system

PRPM2A*, B*

Inch equivalents for millimeter dimensions are shown in (**)

Sandwich type: Pressure reduction code B is located on cartridge side B.

Symbol PRPM2A*

Symbol PRPM2B*

PRPM2P*

Inch equivalents for millimeter dimensions are shown in (**)

Symbol PRPM2P*

PRPM3A*, B*
Inch equivalents for millimeter dimensions are shown in (**)

Sandwich type: Pressure reduction code B is located on cartridge side B.

Symbol PRPM3A*

Symbol PRPM3B*

PRPM3P*

Inch equivalents for millimeter dimensions are shown in (**)

Symbol PRPM3P*

(-) -

General Description

Series DUR*L06 proportional flow control valves are used to generate pressure-compensated flow from A to B. The valves are equipped with a built-in check valve for the return flow.

A rectifier plate can be used for meter-in and meterout control of an actuator.

Function

When solenoid current is applied, the metering spool opens against the reset spring and the flow is regulated by the pressure compensating spool to port B .

With the aid of the pressure compensating spool, the pressure drop is held constant on the metering window. Thus pressure load changes are compensated, and the oil flow remains constant.

The valve parameters can be saved, changed and duplicated in combination with the digital electronic module PCD00A-400.

Features

- Low hysteresis
- High reproducibility
- Load-independent oil flow
- Bypass check valve
- Mounting pattern to ISO 6263
- 4 flow rates

Note: See "Accessories" for rectifier plate and subplates.

Ordering Information

[^21]
Specifications

General	
Design	Electrically adjustable orifice valve with load sensing
Mounting Interface	Subplate NG6, Interface DIN 24340, ISO, CETOP
Mounting Position	Unrestricted, preferably horizontal
Ambient Temperature [$\left.{ }^{\circ} \mathrm{C}\right]$	$-20 \ldots+60 ;\left(-43^{\circ} \mathrm{F} . . .+140^{\circ}\right)$
MTTF ${ }_{\text {D }}$ Value \quad [years]	150
Supply Voltage [V]	24
Solenoid Nominal Current [mA]	680
Duty Cycle [\%]	100 ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible
Solenoid Connection	Connector as per EN 175301-803
Protection Class	IP 65 in accordance with EH 60529 (plugged and mounted)
Amplifier Module	PCD00A-400
Maximum Operating Pressure	210 Bar (3045 PSI)
Fluid	Hydraulic oil according to DIN 51524
Fluid Temperature [$\left.{ }^{\circ} \mathrm{C}\right]$	$-20 \ldots+70\left(-43^{\circ} \mathrm{F} \ldots+158^{\circ} \mathrm{F}\right)$ / Nitrile: $-25 \ldots+70\left(-13^{\circ} \mathrm{F} \ldots+158^{\circ} \mathrm{F}\right)$
Viscosity Range Permitted $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$ Recommended $[\mathrm{cSt}] /\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	$\begin{array}{\|l\|} \hline 20 \ldots 400 \text { (} 93 \ldots . . .1853 \text { SSU) } \\ 30 \ldots . . .80 \text { (139... } 371 \mathrm{SSU}) \\ \hline \end{array}$
Filtration	ISO 4406 (1999); 18/16/13 (acc. NAS 1638: 7)
Minimum Pressure Difference	DUR 1.6/3.2: 3 Bar (43.5 PSI); DUR 6.3/12: 5 Bar (72.5 PSI); DUR 18: 8 Bar (116 PSI)
Hysteresis at $\mathrm{Q}_{\text {nom }}$ [\%]	6
Hysteresis at $\mathbf{Q} \leq \mathbf{2 0 \%} \cdot \mathrm{Q}_{\text {nom }} \quad$ [\%]	6
Repeatability at $\Delta \mathrm{U}_{\text {set }}=5 \mathrm{~V}$	2

DUR $1.6 \mathrm{~L} 06 \mathrm{PK}^{*}$

DUR 3.2 L 06 PK* / DUR $6.3^{\text {L }} 06 \mathrm{PK}^{*}$

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.
C(122 F$)$

DUR 18 L 06 PK*

Inch equivalents for millimeter dimensions are shown in (**)

Seal Kits
Weight: 1.6 kg (3.5 lbs.)

Nitrile	Fluorocarbon
SK-DUR $^{\star * *}$ L	SK-DUR

Bolt Kits (Cylinder head ISO 4662-12.9 not included)

| Size | Valve Model | Quantity | Tightening
 Torque $[\mathrm{Nm}]$ | Valve Without Rectifier Plate | | Valve Without Rectifier Plate | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Dimensions | Order No. | Dimensions | Order No. |
| NG06 | DUR*L06 | 2 | 7.6 Nm | $2 \times$ M5X60 | BK380 | $2 \times$ M5X100 | BK466 |

B01_Cat2550.indd, ddp, 04/19

Sandwich Rectifier Plate

If a 2-way flow control valve is used in combination with a rectifier plate, the valve can be used for meter-in and meter-out flow control of an actuator.

Design

The intermediate rectifier plate is designed with four identical, symmetrically arranged check valves. Thus the differential pressure is the same in both flow directions.

Performance Curve $\Delta \mathrm{p} / \mathrm{Q}$

All performance curves measured with HLP46 at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

Dimensions

Dimension Tolerances

*..$\pm 0.1 \mathrm{~mm}$
Others

$$
\ldots \pm 0.2 \mathrm{~mm}
$$

Holes and Silhouette of Valve Body ... Untoleranced Dimension

Rectifier Plate

Ordering Code: HROA06C

O-ring for sealing the connecting surface (not included)
Subplates

Connections	Dimensions	Required Units
A, B	12×1.5	2

Ordering Code	Description
SPD22B910	P, A, B and T $=\mathrm{G} 1 / 4$
SPD23B910	P, A, B and T $=\mathrm{G} 1 / 8$

General Description

Series F5C proportional throttle valves adjust flow in proportion to the input signal. The combination of the F5C with pressure compensators R5A or R5P serves as a flow control valve, providing load compensated flow.
The F5C is offered with two types of response time:
Standard 350 ms at 1 LPM (0.3 GPM) pilot flow Code A 250 ms at 2 LPM (0.5 GPM) pilot flow

Features

- Spool type proportional throttle valve
- SAE 61 flange
- Maximum pressure 270 Bar (3915 PSI)
- Maximum flow 380 LPM (100.5 GPM)
- 3 sizes: SAE 3/4", 1", 1 1/4"
- Load compensated flow in combination with R5A and R5P

1. WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3 -Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
B01_Cat2550.indd, ddp, 04/19

Weight:

F5C06	$3.9 \mathrm{~kg}(8.6 \mathrm{lbs})$.
F5C08	$4.1 \mathrm{~kg}(9.0 \mathrm{lbs})$.
F5C10	$5.8 \mathrm{~kg}(12.8 \mathrm{lbs})$.

* At nominal pressure drop
($\Delta \mathrm{p}=8.4 \mathrm{Bar}$ (121.8 PSI)

Code	Pilot Connections	F5C without Compensators R5A, R5P	F5C for Combined with R5A	F5C for Combined with R5P
2	Internal PD (Y) Internal PP (X)			$\begin{array}{\|ll\|} \hline \mathrm{X} 1, \mathrm{X} 3, \mathrm{Y} 2 & \\ \mathrm{X} 2, \mathrm{Y} 1 & \mathrm{O} \\ \mathrm{X} 2, \mathrm{Y} 1 & \mathrm{O} \\ \hline \end{array}$
3	External PD (Y) External PP (X)		$\mathrm{X} 1, \mathrm{X} 3, \mathrm{Y} 2$ O $\mathrm{X} 2, \mathrm{Y} 1$ \otimes	
4	External PD (Y) External PP (X)	$\mathrm{X} 3, \mathrm{Y} 2$ O X 1 \quad $\mathrm{X} 2, \mathrm{Y} 1$ \otimes		$\begin{array}{\|ll} \hline \mathrm{X} 2, \mathrm{X} 3, \mathrm{Y} 1, \mathrm{Y} 2 & \mathrm{O} \\ \mathrm{X} 1 & \\ \hline \end{array}$
5	External PD (Y) Internal PP (X)		$\mathrm{X} 1, \mathrm{Y} 2$ O X 3 \quad $\mathrm{X} 2, \mathrm{Y} 1$ \otimes	
6	External PD (Y) Internal PP (X)	$\mathrm{X} 1, \mathrm{X} 3$ \quad $\mathrm{X} 2, \mathrm{Y} 1$ \otimes Y 2 O		$\begin{aligned} & \mathrm{X} 1, \mathrm{X} 3 \\ & \mathrm{X} 2, \mathrm{Y} 1, \mathrm{Y} 2 \end{aligned}$

* optional

F5C with R5P

Specifications

General			
Size	06	08	10
Mounting	Flanged according to SAE 61		
Mounting Position	Unrestricted		
Ambient Temperature Range	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$		
Hydraulic			
Maximum Operating Pressure	Ports A, B, X1, X2, X3 270 Bar (3915 PSI) Ports Y1, Y2 70 Bar (1015 PSI)		
Maximum Pressure Drop (from A to B)	21 Bar (304.5 PSI)		
Flows	26 LPM (6.1 GPM) 45 LPM (11.9 GPM) 95 LPM (25.1 GPM)	$\begin{gathered} 45 \text { LPM (11.9 GPM) } \\ 95 \text { LPM (25.1 GPM) } \\ 190 \text { LPM (50.3 GPM) } \end{gathered}$	$\begin{gathered} 95 \text { LPM (25.1 GPM) } \\ 190 \text { LPM (50.3 GPM) } \\ 380 \text { LPM (100.5 GPM) } \end{gathered}$
Fluid	Hydraulic oil as per DIN 51524...51535, other on request		
Fluid Temperature	$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$		
Viscosity Permitted Recommended	10 to $380 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}$ (46 to 1761 SSU) 30 to $80 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}$ (139 to 371 SSU)		
Filtration	ISO Class 4406 (1999) 18/16/13 (acc. NAS 1638: 7)		
Electrical			
Duty Ratio	100\% ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible		
Solenoid Connection	Connector as per EN175301-803		
Protection Class	IP65 in accordance with EN60529 (plugged and mounted)		
Supply Voltage	16 VDC		
Power Consumption	1.05A		
Resistance	11.3 Ohm		
Response Time	See Ordering information		
Coil Insulation Class	H ($180^{\circ} \mathrm{C}$) (356 ${ }^{\circ} \mathrm{F}$)		

Performance Curves

Inch equivalents for millimeter dimensions are shown in (**)

Internal pilot pressure connection (X1)

© $-\square$
(for use with R5A - 2-port compensator)
Optional external pilot pressure connection (X3)

Seal Kits		
Size	Nitrile	Fluorocarbon
$06 / 08 / 10$	S16-91850-0	S16-91850-5

Size	I1	b1	h1	h2	h3	h4	h5	h6	d1	d2	d3
06	47.6	60.0	68.2	26.0	22.2	103.2	183.0	20.8	19.0	10.5	G1/4"
	(1.87)	(2.36)	(2.69)	(1.02)	(0.87)	(4.06)	(7.20)	(0.82)	(0.75)	(0.41)	
08	52.4	60.0	73.6	29.0	26.2	108.6	187.0	24.3	25.0	10.5	G1/4"
	(2.06)	(2.36)	(2.90)	(1.14)	(1.03)	(4.28)	(7.36)	(0.96)	(0.98)	(0.41)	
10	58.7	75.0	83.5	36.5	30.2	118.5	198.0	29.3	32.0	12.5	G1/4"
	(2.31)	(2.95)	(3.29)	(1.44)	(1.19)	(4.67)	(7.80)	(1.15)	(1.26)	(0.49)	

General Description

Series R5P direct operated, 3-way pressure compensators can be combined with any type of fixed or adjustable flow resistor (throttle) to provide a load compensated flow. The combination with the proportional throttle valve F5C serves as a compact 3-way flow control unit in SAE flange design. The R5P is typically used as meter-in compensator in front of the flow resistor.

The R5P is additionally equipped with a pressure relief pilot that controls the compensator cartridge and operates a system pressure relief valve. The R5P*P2 provides a proportional relief function.

Features

- Seated type 3-way pressure compensator
- SAE 61 flange
- 8.4 Bar (121.8 PSI) control pressure

- Pressure relief function (optionally proportional)
- With optional vent function
- 3 sizes (SAE Code 61 3/4", 1", 1-1/4")
- Load compensated flow in combination with F5C

©WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
B01_Cat2550.indd, ddp, 04/19

Code	Pilot Ports	Port Y1 ${ }^{11}$
3	SAE	Plugged
S	SAE	Open

${ }^{1)} \mathrm{Y} 1$ port is used in combination with F5C, when the F5C should be drained through the R5P (internal or external drain)
3) Through port Y1.1
4) PP through port X1 in outlet flange

Catalog MSG14-2550/US
Specifications

Proportional Pressure Relief Valves
Series R5P (SAE Flange Mounted)

R5P

General						
Size	06 (3/4")		08 (1")		10 (1 1/4")	
Mounting	Flanged according to SAE 61					
Mounting Position	Unrestricted					
Ambient Temperature Range	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$					
MTTF $_{\text {D }}$	150 years					
Hydraulic						
Max. Operating Pressure Ports A, B	350 Bar (5075 PSI)		350 Bar (5075 PSI)		280 Bar (4060 PSI)	
Pressure Ranges	105 Bar (1523 PSI), 210 Bar (3045 PSI), 350 Bar (5075 PSI)					
Nominal Flow	90 LPM (23.8 GPM)		300 LPM (79.4 GPM)		600 LPM (158.7 GPM)	
Fluid	Hydraulic oil as per DIN 51524...51535, other on request					
Fluid Temperature	$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$					
Permitted Viscosity Recommended	10 to $650 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}(46$ to 3013 SSU) 30 to $80 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}$ (139 to 371 SSU)					
Filtration	ISO Class 4406 (1999) 18/16/13 (acc. NAS 1638: 7)					
Electrical (Solenoid) R5P with VV01						
Duty Ratio	100\% ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible					
Solenoid Connection	Connector as per EN175301-803					
Protection Class	IP65 in accordance with EN60529 (plugged and mounted)					
Code	$\frac{\text { GOR }}{12 \mathrm{VDC}}$	G0Q	GAR	GOH	W30	W31
Supply Voltage		24 VDC	98 VDC	48 VDC	$\begin{aligned} & 110 \mathrm{~V} \text { at } 50 \mathrm{~Hz} \\ & 120 \mathrm{~V} \text { at } 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \text { at } 50 \mathrm{~Hz} \\ & 240 \mathrm{~V} \text { at } 60 \mathrm{~Hz} \end{aligned}$
Tolerance Supply Voltage [\%]	± 10	± 10	± 10	± 10	± 5	± 5
Power Consumption Hold [W]	32.7	31	32	30	70 / 70 VA	70 / 70 VA
In Rush [W]	32.7	31	32	30	280 / 290 VA	280 / 290 VA
Response Time	Energized / De-energized AC 20/18ms, DC 46/27 ms					
Maximum Switching Frequency	AC up to 7200, DC 70 to 16,000 switchings/hour					
Coil Insulation Class	$\mathrm{H}\left(180^{\circ} \mathrm{C}\right)\left(356^{\circ} \mathrm{F}\right)$					

R5P*P2 (Proportional)

General			
Size	06 (3/4")	08 (1")	10 (1-1/4")
Mounting	Flanged according to SAE 61		
Mounting Position	Unrestricted		
Ambient Temperature Range	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$		
MTTF $_{\text {D }}$	150 years		
Hydraulic			
Max. Operating Pressure Ports A, B	350 Bar (5075 PSI)	350 Bar (5075 PSI)	280 Bar (4060 PSI)
Pressure Range	105 Bar (1523 PSI), 210 Bar (3045 PSI), 350 Bar (5075 PSI)		
Nominal Flow	90 LPM (23.8 GPM)	300 LPM (79.4 GPM)	600 LPM (158.7 GPM)
Fluid	Hydraulic oil as per DIN 51524...51535, other on request		
Fluid Temperature	$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$		
Permitted Viscosity Recommended	10 to $380 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}(46$ to 1761 SSU$)$ 30 to $80 \mathrm{cSt} / \mathrm{mm}^{2} / \mathrm{s}$ (139 to 371 SSU)		
Filtration	ISO Class 4406 (1999) 18/16/13 (acc. NAS 1638: 7)		
Electrical (Solenoid) R5P with VV01			
Duty Ratio	100\% ED; CAUTION: Coil temperature up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ possible		
Nominal Voltage	12 VDC		
Maximum Current	2.3 A		
Coil Resistance	4 Ohm at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$		
Solenoid Connection	Connector as per EN175301-803, Solenoid indentification as per ISO 9461		
Protection Class	IP65 in accordance with EN60529 (plugged and mounted)		
Power Amplifier	PCD00A-400		

Catalog MSG14-2550/US
Dimensions

Proportional Pressure Relief Valves
Series R5P (SAE Flange Mounted)

Inch equivalents for millimeter dimensions are shown in (**)

Seal Kits*		
Size	Nitrile	Fluorocarbon
06	S16-91461-0	S16-91461-5
08	S16-91460-0	S16-91460-5
10	S16-91459-0	S16-91459-5

* Does not inlcude P2 seal kit.

(0.16)

Size	11	12	13	14	15	16	b1	b2	h1	h2	h3	h4	h5	h6	d1	2	d3
06	$\begin{gathered} \hline 47.6 \\ (1.87) \end{gathered}$	$\begin{gathered} \hline 63.0 \\ (2.48) \end{gathered}$	$\begin{gathered} \hline 56.0 \\ (2.20) \end{gathered}$	$\begin{aligned} & \hline 148.0 \\ & (5.83) \end{aligned}$	$\begin{gathered} \hline 1.0 \\ (0.04) \end{gathered}$	$\begin{gathered} \hline 49.0 \\ (1.93) \end{gathered}$	$\begin{gathered} \hline 60.0 \\ (2.36) \end{gathered}$	$\begin{gathered} \hline 20.0 \\ (0.79) \end{gathered}$	$\begin{aligned} & \hline 119.0 \\ & (4.69) \end{aligned}$	$\begin{array}{\|c\|} \hline 81.6 \\ (3.21) \end{array}$	$\begin{array}{\|c\|} \hline 28.5 \\ (1.13) \end{array}$	$\begin{array}{\|c\|} \hline 22.2 \\ (0.87) \end{array}$	$\begin{gathered} \hline 41.6 \\ (1.64) \end{gathered}$	$\begin{array}{\|c\|} \hline 20.8 \\ (0.82) \end{array}$	$\begin{gathered} 19.0 \\ (0.75) \end{gathered}$	$\begin{gathered} 10.5 \\ (0.41) \end{gathered}$	3/8" UNC
08	$\begin{gathered} 52.4 \\ (2.06) \\ \hline \end{gathered}$	$\begin{gathered} 65.0 \\ (2.56) \\ \hline \end{gathered}$	$\begin{gathered} 58.0 \\ (2.28) \\ \hline \end{gathered}$	$\begin{aligned} & 144.6 \\ & (5.69) \end{aligned}$	$\begin{array}{\|c\|} \hline 5.0 \\ (0.20) \\ \hline \end{array}$	$\begin{gathered} 54.5 \\ (2.15) \end{gathered}$	$\begin{gathered} 60.0 \\ (2.36) \end{gathered}$	$\begin{array}{\|c\|} \hline 23.0 \\ (0.91) \\ \hline \end{array}$	$\begin{aligned} & 142.0 \\ & (5.59) \end{aligned}$	$\begin{aligned} & 103.0 \\ & (4.06) \end{aligned}$	$\begin{array}{\|c\|} \hline 30.5 \\ (1.20) \\ \hline \end{array}$	$\begin{gathered} \hline 26.2 \\ (1.03) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 48.6 \\ (1.91) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 24.3 \\ (0.96) \\ \hline \end{array}$	$\begin{gathered} 25.0 \\ (0.98) \end{gathered}$	$\begin{gathered} 10.5 \\ (0.41) \end{gathered}$	3/8" UNC
10	$\begin{gathered} 58.7 \\ (2.31) \\ \hline \end{gathered}$	$\begin{gathered} 61.0 \\ (2.40) \\ \hline \end{gathered}$	$\begin{gathered} 62.0 \\ (2.44) \\ \hline \end{gathered}$	$\begin{aligned} & 146.6 \\ & (5.77) \end{aligned}$	$\begin{gathered} \hline 3.0 \\ (0.12) \end{gathered}$	$\begin{gathered} 56.5 \\ (2.22) \end{gathered}$	$\begin{gathered} 75.0 \\ (2.95) \end{gathered}$	$\begin{array}{c\|} \hline 22.0 \\ (0.87) \\ \hline \end{array}$	$\begin{aligned} & 149.0 \\ & (5.87) \end{aligned}$	$\begin{aligned} & 111.5 \\ & (4.39) \end{aligned}$	$\begin{gathered} 37.5 \\ (1.48) \end{gathered}$	$\begin{gathered} 30.2 \\ (1.19) \end{gathered}$	$\begin{array}{\|c\|} \hline 64.1 \\ (2.52) \\ \hline \end{array}$	$\begin{gathered} \hline 29.3 \\ (1.15) \\ \hline \end{gathered}$	$\begin{gathered} 32.0 \\ (1.26) \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ (0.49) \\ \hline \end{gathered}$	7/16" UNC

Port	Function	Port size		
		R5P06	R5P08	R5P10
A	Inlet/Outlet	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	$1-1 / 4^{\prime \prime}$
B2	Tank	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	M3
X2	Internal Pilot Pressure		G1/4"	
X2.2	External Pilot Pressure		M3	
Y1	Internal Pilot Drain		G1/4"	
Y1.1	External Pilot Drain		G1/4"	
M	Pressure Gauge			

B01_Cat2550.indd, ddp, 04/19

R5P with Vent Function

Inch equivalents for millimeter dimensions are shown in (**)

Seal Kits*	
Nitrile	Fluorocarbon
DC solenoid	
S26-58515-0	S26-58515-5
AC solenoid	
S26-35237-0	S26-35237-5

* For vent valve only.

Code	Internal Drain	External Drain
11		
09		

B01_Cat2550.indd, ddp, 04/19

R5P with Proportional Function

Inch equivalents for millimeter dimensions are shown in (**)

	Seal Nitrile	Fluorocarbon
Prop. Section P2	S26-58473-0	S26-58473-5

* P2 seal kit only.

See previous page for full valve seal kit

General Description

Series LCM 2-way pressure compensators are sandwich valves designed for stacking beneath a proportional directional control valve with a standardized mounting pattern.

The valve maintains a constant pressure differential between ports P and A or P and B across the directional valve. When the cross sectional opening of the directional valves is held steady, a constant flow rate is achieved, regardless of load fluctuations.

The control pressure applied to the spring side of the compensator spool is supplied from port A or B via a shuttle valve. Flow rate regulation is automatically effective in the port with the highest pressure.

Application Example

Specifications

General	NG6	NG10	
Size	NFPA D03	NFPA D05	
Mounting Position	CETOP 3	CETOP 5	
Maximum Flow	20 LPM (5.28 GPM)	52 LPM (13.73 GPM)	
Maximum Operating Pressure	350 Bar (5075 PSI)		
Pressure Differential	10 Bar (145 PSI)		

Ordering Information

LCM Pressure Compensator	
Code Description 2 NG6 3 NG10	

\urcorner
ᄂ,」

Design
Series
NOTE:
Not required when ordering.
Weight:
$\begin{array}{ll}\text { LCM2 } & 2.5 \mathrm{~kg} \text { (5.5 lbs.) } \\ \text { LCM3 } & 3.1 \mathrm{~kg}(6.8 \mathrm{lbs} .)\end{array}$

Dimensions - Inch equivalents for millimeter dimensions are shown in (**)

LCM2

Mounting Screws: BK403 (4) M5 x 90
For mounting screws connected with directional valves D1 or 2-stage valves

LCM3

Mounting Screws: BK412 (4) M6 x 90
The views show the mounting surface for the directional valve

[^22]

Manifold Mounted Valves

Series	Description	Page
BD15	.Two-Stage Torque Motor Servovalve (up to 20 GPM)	C2-C8
BD30	.Two-Stage Torque Motor Servovalve (up to 40 GPM)	C9-C11

Flapper Nozzle

Series	Description	Page
PH76	.Two-Stage Torque Motor Servovalve (up to 15 GPM)	C12-C15
DY1S	. One-Stage Torque Motor Servovalve (Pressure Control)	C16-C18
DY3H	.Two-Stage Torque Motor Servovalve (up to 6 GPM)	C19-C22
DY01	.Two-Stage Torque Motor Servovalve (up to 3 GPM)	C23-C26
DY05	.Two-Stage Torque Motor Servovalve (. 25 to 5 GPM) .	C27-C30
DY10	.Two-Stage Torque Motor Servovalve (7.5 to 10 GPM)	C31-C34
DY15	.Two-Stage Torque Motor Servovalve (15 to 25 GPM)	C35-C38
DY25	.Two-Stage Torque Motor Servovalve (25 to 30 GPM)	C39-C42
DY45	.Two-Stage Torque Motor Servovalve (40 to 60 GPM)	C43-C46
SE05	.Two-stage, 4-way, Flapper and Nozzle Servovalve	C47-C53
SE2N	.Two-stage, 4-way, Flapper and Nozzle Servovalve	C54-C57
SE20	.Two-stage, 4-way, Flapper and Nozzle Servovalve	C58-C62
SE31	.Two-stage, 4-way, Flapper and Nozzle Servovalve	C63-C67
SE60	.Two-stage, 4-way, Flapper and Nozzle Servovalve ..	C68-C71

Catalog MSG14-2550/US
Technical Information

Servovalves

Series BD

Description

Series BD servovalves provide high resolution in the control of position, velocity and force in motion control applications.

Features

- Rugged, reliable, trouble-free operation
- Reduced contaminant sensitivity
- Linear flow gain characteristics
- Explosion proof model available

Operation

When used in conjunction with Series BD90 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

Specifications

Rated Flow	3.8-151 LPM (1.0-40 GPM)
Linearity	$\leq 5 \%$
Hysteresis	$\leq 3 \%$
Threshold	$\leq 0.5 \%$
Fluid	Mineral Oil, 60 - 225 SSU, 1000 SSU maximum
Operating Temperature	$-34^{\circ} \mathrm{C}$ to $+82^{\circ} \mathrm{C}\left(-29^{\circ} \mathrm{F}\right.$ to $\left.+180^{\circ} \mathrm{F}\right)$
Pressure Gain	3\% of spool shift
Null Shift with temperature with supply press.	$\begin{aligned} & <2 \% \text { per } 38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & <2 \% \text { per } 70 \mathrm{Bar}(1000 \mathrm{PSI}) \\ & \hline \end{aligned}$
Quiescent Flow (Std. Spool Lap)	BD15: 1.5-2.1 LPM (0.40-0.55 GPM) BD30: 2.1-3.8 LPM (.55-1.0 GPM)
Step Response Input	BD15: $10-90 \%, 26 \mathrm{~ms}$ BD30: $10-90 \%$, 30 ms
Pressure Ranges For optimum perfor to operate within sp	mance, Parker Servo valves are designed ecific system supply pressure ranges.
Filtration	SAE Class 3 or better, ISO Code 17/15/12
Protection Class	NEMA 4, IP65

Flow-Load Characteristics

Control flow to the load will change the load pressure and valve current as shown in the flow chart below. These characteristics closely follow the theoretical square root relationship for sharp-edged orifices as illustrated in the equation below.

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{K} \sqrt{\Delta \mathrm{P}} \\
& \mathrm{Q}=\text { Control flow, cubic inches/sec } \\
& \mathrm{K}=\text { Valve constant } \\
& \Delta \mathrm{P}=\text { Valve pressure drop }
\end{aligned}
$$

Change in Flow with Current and Load Pressure

Model	Flow Capacity @ 68 Bar (1000 PSI) LPM (GPM)	Max. Pressure Rating Bar (PSI)	Max. Tank Pressure Bar (PSI)	Port Circle	Electrical Input (std.) Single Coil	Coil Resistance (Std.) Each Coil	Weight
BD15	$\begin{gathered} 3.8,9.5,19,37,57,76 \\ (1,2.5,5,10,15,20) \\ \hline \end{gathered}$	$\begin{gathered} 210 \mathrm{Bar} \\ \text { (3000 PSI) } \\ \hline \end{gathered}$	$\begin{gathered} 14 \mathrm{Bar} \\ \text { (200 PSI) } \\ \hline \end{gathered}$	0.875	$\begin{gathered} 60 \mathrm{~mA} \\ \text { (Full Flow } \\ \hline \end{gathered}$	60 Ohms	$\begin{gathered} 1.2 \mathrm{~kg} \\ (2.6 \mathrm{lbs} .) \\ \hline \end{gathered}$
BD30	$\begin{aligned} & 76,95,113,151 \\ & (20,25,30,40) \end{aligned}$	$\begin{gathered} 210 \mathrm{Bar} \\ \text { (3000 PSI) } \\ \hline \end{gathered}$	$\begin{gathered} 14 \mathrm{Bar} \\ (200 \mathrm{PSI}) \\ \hline \end{gathered}$	1.75	$\begin{gathered} 60 \mathrm{~mA} \\ \text { (Full Flow } \end{gathered}$	60 Ohms	$\begin{gathered} 2.9 \mathrm{~kg} \\ \text { (6.3 lbs.) } \\ \hline \end{gathered}$

【 WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
C01_Cat2550.indd, ddp, 04/19

See Note 2.

Note 1: "J" Exposion Proof meets:
Canadian Standards Association
Class I, Groups A through D
Class II, Groups E, F and G
Class III
Refer to Parker Bulletin 1451.
" N " Explosion Proof meets:
ATEX Ex \III2G EExm IIT3 $\mathrm{T}_{\mathrm{amb}} 45^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$
Request Parker Documentation Package: 1200074

Note 2: Connector Location \& Flow Polarity
(Standard connector over $\mathrm{C}_{2}+$ to $\mathrm{B}=\mathrm{P}$ to C_{1} flow).
$\mathrm{C}_{2} \mathrm{~B}=$ Connector over Port $\mathrm{C}_{2^{\prime}}$ + to Pin $\mathrm{B}=\mathrm{P}$ to C_{1} flow.
$\mathrm{C}_{2} \mathrm{D}=$ Connector over Port $\mathrm{C}_{2^{\prime}}$ + to Pin D = P to C flow.
$\mathrm{C}_{1} \mathrm{~B}=$ Connector over Port C_{1}, to Pin $\mathrm{B}=\mathrm{P}$ to C_{1} flow.
$\mathrm{C}_{1} \mathrm{D}=$ Connector over Port C_{1} + to Pin $\mathrm{D}=\mathrm{P}$ to C_{1} flow.
Note 3: Supply Pressure: Code "H" applies to 5th Port/External Pilot Option. This requires the use of a blank orifice "-00". First stage pressure should be limited to 41.4 Bar (600 PSI) and no less than 27.6 $\operatorname{Bar}(400 \mathrm{PSI})$.

Servo valve rated flow at 1000 PSID $\pm 10 \%$.

Catalog MSG14-2550/US
Ordering Information

Servovalves

Series BD

Accessories

Model	Description	Model	Description
6522A11	1/16" Hex Allen Wrench	820089-1	BD30 Servovalve Shippping Container
810005-1	Orifice Filter	BD830008	BD90/95 Amplifier Board Shipping Container
810013-**	Valve Orifice Kit, Fluorocarbon		
810014-**	Valve Orifice Kit, Nitrile	810089-1	BD15 Servovalve Shipping Container
**Dash \#	Operating Pressure		
-16	$180-210$ Bar (2600-3000 PSI) B	820000TF3	Filter Wrench
-18	138-176 Bar (2000-2550 PSI) C		
-20	$96-134$ Bar (1400-1950 PSI) D	MS3106E-14S-2S	SV Mating Connector
-22	$69-93 \text { Bar (1000-1350 PSI) E }$		
-33	48 - 66 Bar (700-950 PSI) F	1200127	Flushing valve for BD15
-50	$14-45$ Bar (200-650 PSI) G	1200128	Flushing valve for BD30
-00	0-210 Bar (0-3000 PSI) 5th Port H	810107	BD15 Block off Plate

Adapters

Subplates

Valve Model	Subplate	Port Size	Location	Bolt Kit	Torque Specifications (Lubricated)
BD15	$810090-3$	SAE12	Side	BK07	$17 \mathrm{ft}$. Ibs.
BD30	$820090-3$	SAE16	Side	BK46	$17 \mathrm{ft}$. Ibs.

Cables

Series BD15

Series BD30

Inch eqivalents for millimeter dimensions are shown in (**)
Note: Valve mating surface to be flat within 0.002
TIR, and smooth to within 63 RMS

* 140 (5.50) for BD15C; explosion proof, FM approved.
Note: Vertically oriented 1/2 NPT threaded male conduit connection with lead wires (not as shown).
Wiring

Inch eqivalents for millimeter dimensions are shown in (**)

Note: Valve mating surface to be flat within 0.002 TIR, and smooth to within 63 RMS

Inch eqivalents for millimeter dimensions are shown in (**)

Note: Valve mating surface to be flat within 0.002 TIR, and smooth to within 63 RMS

Inch eqivalents for millimeter dimensions are shown in (**)

Note: Valve mating surface to be flat within 0.002 TIR, and smooth to within 63 RMS

* 160 (6.25) for BD30C; explosion proof, FM approved. Note: Vertically oriented $1 / 2$ NPT threaded male conduit connection with lead wires (not as shown).

Inch eqivalents for millimeter dimensions are shown in (**)

Note: Valve mating surface to be flat within 0.002 TIR, and smooth to within 63 RMS

Inch eqivalents for millimeter dimensions are shown in (**)

ATEX Wiring
$(+) \xrightarrow{\text { Black \#1 }}$
(-) Black \#2 Gnd Yellow with Green Stripe
+ Current to Black \#1 connects P \rightarrow C1 port

Note: Valve mating surface to be flat within 0.002 TIR, and smooth to within 63 RMS

Servovalves
Series PH76

General Description

Series PH76 servovalves are high performance, two stage valves, with a range of rated flows from 3.8 to 57 LPM (1 to 15 GPM). The pilot stage is a symmetrical double-nozzle and flapper, driven by a double air gap, dry torque motor. A low current signal to the torque motor pilot stage results in a proportional flow from the output stage. The output stage is a 4-way, sliding spool which provides a mechanical feedback using an exclusive "no ball glitch" design.

Features

- Built to survive tank port pressure spikes
- No ball glitch
- Tool steel spool and body
- Optional $5^{\text {th }}$ port for external pilot
- ISO 10372 standard 22.23 mm (0.875 in) port circle

Specifications

Flow Rating $\pm 10 \%$ @ 70 Bar (1000 PSID)	$\begin{aligned} & \text { 3.8, 9.5, 19, 28, 38, } 57 \text { LPM } \\ & (1,2.5,5,7.5,10,15 \text { GPM }) \end{aligned}$	Threshold	$\leq 0.5 \%$
		Null Shift with temperature with pressure	$\begin{aligned} & \leq 2 \% \text { per } 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & \leq 2 \% \text { per } 70 \operatorname{Bar}(1000 \mathrm{PSI}) \end{aligned}$
Supply Pressure	$\begin{aligned} & 10-210 \mathrm{Bar} \\ & (145-3000 \mathrm{PSI}) \end{aligned}$		
Tank Port Pressure	210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance	Pressure Gain \% change in pressure per 1% change in input command	30\% minimum, 70% max.
Null Leakage Flow per 70 Bar (1000 PSID)	$\begin{aligned} & 0.2-0.8 \text { LPM } \\ & (0.05-0.20 \text { GPM }) \end{aligned}$		
		Step Response	$10-90 \%,<6 \mathrm{~ms}$
Pilot Flow @ 210 Bar (3000 PSID)	$\begin{aligned} & 0.8-1.2 \text { LPM } \\ & (0.21-0.33 \text { GPM }) \end{aligned}$	Fluid	Mineral Oil, 60 - 225 SSU 1000 SSU maximum
Input Command	$\pm 50 \mathrm{~mA}$ std.	Operating Temperature	$\begin{aligned} & -1^{\circ} \mathrm{C} \text { to }+82^{\circ} \mathrm{C} \\ & \left(+30^{\circ} \mathrm{F} \text { to }+180^{\circ} \mathrm{F}\right) \end{aligned}$
Frequency Response @ 90° phase shift	$\begin{aligned} & >90 \mathrm{~Hz} \\ & \text { (See Performance Curves) } \end{aligned}$		
		Protection Class	NEMA 4, IP65
Non-Linearity	< 10\%	Fluid Cleanliness	ISO 4406 15/12 or better

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
C01_Cat2550.indd, ddp, 04/19

Cable with mating connector: EHC154S
Mating connector: MS3106E-14S-2S
Bolt kit: Included with valve. BK07 (4) 5/16-18×1"
Flushing valve: 1200127 (same for 4 or 5 port PH76 valve)
Subplate, 5 ports: 1402303 (4) \#12 SAE side ports, (1) \#4 SAE side port
Subplate, 4 ports: 810090-3 (4) \#12 SAE side ports
Null adjust tool: 6522A13

Flushing valve is rated for 3000 psi operation.

Driver cards: 23-7030, BD90*, BD101*
When used in conjunction with Series BD90 and BD101 servo amplifiers or a motion controller, Series BD valves will provide
accurate control of rotary and linear actuators.

* For output currents >15 mA

Performance Curves

Servovalve flow is proportional to the square root of the pressure drop through the valve. The nominal flow rating for the servovalves is based upon a $70 \mathrm{Bar}(1000 \mathrm{PSI})$ pressure drop.

Frequency Response

The frequency response curves for the PH76 servovalves show no significant change for signal amplitudes between $\pm 10 \%$ and $\pm 40 \%$. Frequency response is unaffected by changes in supply pressures above $70 \operatorname{Bar}(1000 \mathrm{PSI})$.

Flow vs. Pressure Drop
at 100% command

Installation Wiring Options

The PH76 servovalve has two coils. One is wired across pins A to B, the other across pins C to D. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. In either case, a positive voltage to pin A connects valve flow from ports P to C 2 and ports C 1 to R .

Polarity shown (+A, -B, +C, -D) connects flow from P to C 2 port.

Servovalves

Series PH76

Inch equivalents for millimeter dimensions are shown in (**)

Connector shown over C2 port. See ordering information for other connector locations.

The connector location is factory set and is not field changeable.

Mounting Surface Dimensions

Metric Dimensions (millimeters)					$\pm 0.1 \mathrm{~mm}$					
Axis	P	C1	R	C2	G	X	F1	F2	F3	F4
	$\begin{aligned} & \varnothing 8.2 \\ & \max . \end{aligned}$	$\begin{gathered} \varnothing 8.2 \\ \max . \end{gathered}$	$\begin{aligned} & \varnothing 8.2 \\ & \max . \end{aligned}$	$\begin{aligned} & \varnothing 8.2 \\ & \max \end{aligned}$	$\begin{aligned} & \varnothing 3.5 \\ & \max . \end{aligned}$	$\varnothing 5$	M8	M8	M8	M8
X	22.2	11.1	22.2	33.3	12.3	49.5	0	44.4	44.4	0
Y	21.4	32.5	43.6	32.5	19.8	39	0	0	65	65

U.S. Dimensions (inches)					$\pm .004$ in					
Axis	P	C1	R	C2	G	X	F1	F2	F3	F4
	$\begin{array}{\|c} \varnothing \\ \max . \end{array}$	$\begin{gathered} \varnothing 0.32 \\ \max . \end{gathered}$	$\begin{gathered} \varnothing 0.32 \\ \max . \end{gathered}$	$\begin{gathered} \varnothing 0.32 \\ \max . \end{gathered}$	$\begin{gathered} \varnothing 0.14 \\ \max . \end{gathered}$	$\varnothing 0.2$	5/16-18			
X	0.875	0.437	0.875	1.311	0.484	1.531	0	1.750	1.750	0.000
Y	0.846	1.280	1.717	1.280	0.780	1.950	0	0	2.562	2.562

Minimum depth of G is 2 mm (0.08 in)
Recommended full thread depth for bolt holes 22 mm (0.87 in)
Surface roughness: Ra<0.8 $\mu \mathrm{m}$ (0.031 in) as specified in ISO 468 and 1302
Surface flatness: $0.025 \mathrm{~mm}(0.001 \mathrm{in})$ as specified in ISO 1101

Servovalves

Series DY1S

General Description

Series DY1S are open center, single stage differential pressure control valves. They are operated by a current driven torque motor. These valves controls the pressure difference between the two actuator ports, C1 and C 2 , by varying the resistance to flow through their nozzles.

Features

- No mechanical wear points
- High frequency response
- Nozzle and flapper design
- Versatile 21.59 mm (0.850 in .) port circle, can mount to standard 19.81 mm (0.780 in .) and 23.62 mm (0.930 in .) port circle patterns

Specifications

Flow Rating @ 90 Bar (1300 PSI)	0.4 LPM (0.1 GPM)	Null Shift with temperature with pressure	$\begin{aligned} & \leq 2 \% \text { per } 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & \leq 2 \% \text { per } 70 \operatorname{Bar}(1000 \mathrm{PSI}) \end{aligned}$
Quiescent Flow @ 90 Bar (1300 PSI)	$1.3-1.9$ LPM (0.3-0.5 GPM)		
		Presssure Gain \% change in pressure per 1% change in input command	1\% minimum
Supply Pressure	7 - 90 Bar (100-1300 PSI)		
Tank Port Pressure	90 Bar (1300 PSI) Max. < 10 Bar (145 PSI) for best performance		
		Step Response	$10-90 \%,<5 \mathrm{~ms}$
Input Command	$\pm 50 \mathrm{~mA} \mathrm{std}$.	Fluid	Mineral Oil, 60 - 225 SSU 1000 SSU maximum
Frequency Response @ 90° phase shift	> 100 Hz	Operating Temperature	$\begin{aligned} & -1^{\circ} \mathrm{C} \text { to }+82^{\circ} \mathrm{C} \\ & \left(+30^{\circ} \mathrm{F} \text { to }+180^{\circ} \mathrm{F}\right) \end{aligned}$
Non-Linearity	$\leq 10 \%$	Protection Class	NEMA 4, IP65
Threshold	$\leq 0.5 \%$	Filtration	ISO 4406 15/12 or better

©

Accessories

Cable with Mating Connector: EHC154S
Mating Connector: MS3106E-14S-2S
Bolt Kit: Included with valve
Flushing Valve: 11-0500
Subplate: 55-0100-2 SAE-6 Side ports
Null Adjust Tool: 6522A13
Electronic Drivers: 23-7030, BD90*, BD101*
When used in conjunction with Series BD90 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents >15 mA

Flushing valve is rated for 3000 psi operation.

Special Options:

Consult factory for price, delivery and availability of special options.

Special coil
Special wiring
Special seals
Wiring Option C
(Standard)

Polarity shown connects
P to C2 port.

Inch equivalents for millimeter dimensions are shown in (**)

Connector over C1 port

Mounting Interface

Inch equivalents for millimeter dimensions are shown in (**)

Servovalves

Series DY3H and DY6H

General Description

Series DY3H and DY6H are two stage, 4-way, high frequency, closed loop servovalves, with mechanical spool position feedback. These valves use a flapper and nozzle type, torque motor driven pilot stage to drive the sliding spool second stage. The unique rigid pin feedback design avoids ball glitch problems, which can occur in other types of servovalves.

The DY3H and DY6H offer a compact, lower cost alternative without sacrificing performance in systems operating at 105 Bar (1500 PSI) or less.

Features

- Precision lapped spool and sleeve
- No ball glitch
- High frequency response
- Nozzle and flapper design
- Adapters available for mounting to D03 or ISO port patterns

Specifications

Flow Rating @ 70 Bar (1000 PSID)	11 and 22 LPM (3 and 6 GPM)	Null Shift with temperature	$\leq 2 \%$ per $55^{\circ} \mathrm{C}(100$
Supply Pressure	10-105 Bar (145-1500 PSI)	with pressure	$\leq 2 \%$ per 70 Bar (1000 PSI)
Leakage Flow @ 70 Bar (1000 PSID)	1.3 - 1.9 LPM (0.3-0.5 GPM)	Presssure Gain \% change in pressure per 1\% change in input command	30\% minimum, 70% maximum
Tank Port Pressure	105 Bar (1500 PSI) Max. < 10 Bar (145 PSI) for best performance	Step Response	10 - 90\%, $<6 \mathrm{~ms}$ for DY3H < 8 ms for DY6H
Input Command	$\pm 50 \mathrm{~mA}$ std.	Fluid	Mineral Oil, 60 - 225 SSU 1000 SSU maximum
Frequency Response @ 90° phase shift	$\begin{aligned} & >190 \mathrm{~Hz} \\ & \text { (See Performance Curves) } \end{aligned}$		
		Operating Temperature	$\begin{aligned} & -1^{\circ} \mathrm{C} \text { to }+82^{\circ} \mathrm{C} \\ & \left(+30^{\circ} \mathrm{F} \text { to }+180^{\circ} \mathrm{F}\right) \end{aligned}$
Non-Linearity	$\leq 10 \%$		
Threshold	$\leq 0.5 \%$	Protection Class	NEMA 4, IP65
		Filtration	ISO 4406 15/12 or better

[^23]

Accessories

Cable with Mating Connector: EHC154S
Mating Connector: MS3106E-14S-2S
Bolt Kit: Included with valve
Flushing Valve: 11-0300
Subplate: 55-0800-2 SAE-4 Side ports
Null Adjust Tool: 6522A13
Electronic Drivers: 23-7030, BD90*, BD101*
When used in conjunction with Series BD90 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents >15 mA

Flushing valve is rated for 3000 psi operation.

Special Options:

Consult factory for price, delivery and availability of special options.

Special coil Special wiring

Wiring Option C
 (Standard)

Polarity shown connects P to C2 port.

Servovalves

Series DY3H and DY6H

Installation Wiring Options

This servovalve has two coils. This illustration shows the internal wiring configurations for these valves. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustration below and to the mounting pattern for this valve to insure proper control phasing.

Polarity shown connects flow from P to C 2 port.

Dimensions

Servovalves

Series DY3H and DY6H

Inch equivalents for millimeter dimensions are shown in (**)

Mounting Interface

Inch equivalents for millimeter dimensions are shown in (**)

Servovalves

Series DY01

General Description

Series DY01 are two stage, 4-way, flapper and nozzle style servovalves. The DY01 servovalve combines a spool and sleeve construction, and a high frequency torque motor, for optimal performance. The unique rigid pin feedback design avoids ball glitch problems, which can occur in other types of servovalves. This valve is rated for 210 Bar (3000 PSI) standard, or can be built for $350 \mathrm{Bar}(5000 \mathrm{PSI})$ service. The pressure ratings
 are the same for both the tool steel construction or the optional stainless steel spool and body.

The DY01 servovalve was specially designed for high precision flight simulator applications.

Features

- Precision lapped spool and sleeve
- No ball glitch
- Tool steel, or stainless steel, spool and body
- Versatile 21.59 mm (0.850 in .) port circle, can mount to standard 19.81 mm (0.780 in .) and 23.62 mm (0.930 in.) port circle patterns

Specifications

Flow Rating @ 70 Bar (1000 PSID)	3 and 11 LPM (1 and 3 GPM)	Null Shift with temperature with pressure	$\begin{aligned} & \leq 2 \% \text { per } 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & \leq 2 \% \text { per } 70 \mathrm{Bar}(1000 \mathrm{PSI}) \end{aligned}$
Supply Pressure	10-210 Bar (145-3000 PSI)		
	opt. 350 Bar (5000 PSI)	Presssure Gain \% change in pressure per 1% change in input command	
Leakage Flow @ 70 Bar (1000 PSID)	$\begin{aligned} & 0.42-0.95 \text { LPM } \\ & (0.11-0.25 \text { GPM } \end{aligned}$		30\% Minimum, 70\% Maximum
Tank Port Pressure	$\begin{aligned} & 210 \mathrm{Bar}(3000 \mathrm{PSI}) \text { Max. } \\ & \text { < } 10 \text { Bar (145 PSI) for } \\ & \text { best performance } \end{aligned}$	Step Response	$10-90 \%,<8 \mathrm{~ms}$
		Fluid	Mineral Oil, 60 - 225 SSU 1000 SSU maximum
Input Command	$\pm 50 \mathrm{~mA}$ std.		
Frequency Response @ 90° phase shift	$\begin{aligned} & >180 \mathrm{~Hz} \\ & \text { (See Performance Curves) } \end{aligned}$	Operating Temperature	$\begin{aligned} & -1^{\circ} \mathrm{C} \text { to }+82^{\circ} \mathrm{C} \\ & \left(+30^{\circ} \mathrm{F} \text { to }+180^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$
Non-Linearity	$\leq 10 \%$	Protection Class	NEMA 4, IP65
Threshold	$\leq 0.5 \%$	Filtration	ISO 4406 15/12 or better

Catalog MSG14-2550/US
Ordering Information

Servovalves
Series DY01

Accessories

Cable with Mating Connector: EHC154S
Mating Connector: MS3106E-14S-2S
Bolt Kit: Included with valve
Flushing Valve: 11-0500
Subplate: 55-0100-8S SAE-8 Side ports
Null Adjust Tool: 6522A13
Electronic Drivers: 23-7030, BD90*, BD101*
When used in conjunction with Series BD90 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents $>15 \mathrm{~mA}$

Flushing valve is rated for 3000 psi operation.

Frequency Response

DY01 Flow vs. Pressure Drop
at 100% command
Flow Path: $\mathrm{P} \rightarrow \mathrm{C} 1 \rightarrow \mathrm{C} 2 \rightarrow \mathrm{~T}$

Installation Wiring Options

This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Option C

Option D

Polarity shown connects flow from P to C 2 port.

Inch equivalents for millimeter dimensions are shown in (**)

© -9

Mounting Interface

Servovalves

Series DY05

General Description

Series DY05 are two stage, 4-way, flapper and nozzle style servovalves. The DY05 has a wide range of flow ratings within a lower cost spool and body design. The unique rigid pin feedback design avoids ball glitch problems, which can occur in other types of servovalves. These valves are rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool
 steel construction or the optional stainless steel spool and body.

Features

- Lapped spool and body
- No ball glitch
- Tool steel, or stainless steel, spool and body
- Versatile 21.59 mm (0.850 in .) port circle, can mount to standard 19.81 mm (0.780 in .) and 23.62 mm (0.930 in .) port circle patterns

Specifications

Flow Rating @ 70 Bar (1000 PSID)	$0.95,1.9,3.8 .9 .5$ and 19 LPM (0.25, 0.5, 1.0, 2.5 \& 5 GPM)	Null Shift with temperature	$\leq 2 \% \text { per } 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$
Supply Pressure	$10-210 \operatorname{Bar}(145-3000 \mathrm{PSI})$ opt. 350 Bar (5000 PSI)		$\leq 2 \%$ per 70 Bar (1000
		Presssure Gain \% change in pressure per 1% change in input command	30\% minimum, 70% maximum
Leakage Flow @ 70 Bar (1000 PSID)	$\begin{aligned} & 0.42-0.95 \mathrm{LPM} \\ & (0.11-0.25 \mathrm{GPM}) \end{aligned}$		
Tank Port Pressure	210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance	Step Response	$10-90 \%,<11 \mathrm{~ms}$
		Fluid	Mineral Oil, 60 - 225 SSU 1000 SSU maximum
Input Command	$\pm 50 \mathrm{~mA}$ std.		
Frequency Response @ 90° phase shift	$\begin{aligned} & >100 \mathrm{~Hz} \\ & \text { (See Performance Curves) } \end{aligned}$	Operating Temperature	$\begin{aligned} & -1^{\circ} \mathrm{C} \text { to }+82^{\circ} \mathrm{C} \\ & \left(+30^{\circ} \mathrm{F} \text { to }+180^{\circ} \mathrm{F}\right) \end{aligned}$
Non-Linearity	$\leq 10 \%$	Protection Class	NEMA 4, IP65
Threshold	$\leq 0.5 \%$	Filtration	ISO 4406 15/12 or better

Catalog MSG14-2550/US
Ordering Information

Servovalves
Series DY05

Operating pressure is independent of material selection.

Weight: $\quad 1.0 \mathrm{~kg}(2.1 \mathrm{lbs}$.
Code Connector over: Flow P to C2 with:
C Port C1
(+) Signal to A, C
D Port C1
(+) Signal to B, D
Z Special (specify)

Code	Description
N	Nitrile (standard)
V	Fluorocarbon

Special Options:

Consult factory for price, delivery and availability of special options.

Special coil
Special wiring
Special flow rate
Dual flow rate
Dual gain
Zener barriers
High frequency torque motor (Models 5, 10, 12 \& 15 only)

Wiring Option C Wiring Option D (Standard)

Dyval and
Pegasus standard.

Moog, Atchley and Vickers standard.

In both cases, polarity shown connects P to C 2 port.

Flushing valve is rated for 3000 psi operation.

Accessories

Cable with Mating Connector: EHC154S
Mating Connector: MS3106E-14S-2S
Bolt Kit: Included with Valve
Flushing Valve: 11-0500
Subplate: 55-0100-8S SAE-8 Side ports
Null Adjust Tool: 6522A13
Electronic Drivers: 23-7030, BD90*, BD101*
When used in conjunction with Series BD90 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents $>15 \mathrm{~mA}$

Installation Wiring Options

This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Option C

Polarity shown connects flow from P to C 2 port.

Inch eqivalents for millimeter dimensions are shown in (**)

Mounting Interface

Inch eqivalents for millimeter dimensions are shown in (**)

Servovalves

Series DY10

General Description

Series DY10 are two stage, 4-way, flapper and nozzle style servovalves. The DY10 is a higher flow version of the DY05. The unique rigid pin feedback design avoids ball glitch problems, which can occur in other types of servovalves. These valves are rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool steel construction or the optional stain-
 less steel spool and body.

Features

- Lapped spool and body
- No ball glitch
- Tool steel, or stainless steel, spool and body
- Versatile 21.59 mm (0.850 in .) port circle, can mount to standard 19.81 mm (0.780 in .) and 23.62 mm (0.930 in .) port circle patterns
- Survives high tank port pressures

Specifications

Flow Rating @ 70 Bar (1000 PSID)	28 and 38 LPM (7.5 and 10 GPM)	Null Shift with temperature	$\leq 2 \%$ per $55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$
Supply Pressure	$10-210 \operatorname{Bar}(145-3000 \mathrm{PSI})$ opt. 350 Bar (5000 PSI)	with pressure	<2\% per 70 Bar (1000
		Presssure Gain \% change in pressure per 1% change in input command	30\% minimum, 70% maximum
Leakage Flow @ 70 Bar (1000 PSID)	$\begin{aligned} & 0.57-1.1 \mathrm{LPM} \\ & (0.15-0.3 \mathrm{GPM}) \end{aligned}$		
Tank Port Pressure	210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance	Step Response	$10-90 \%,<13 \mathrm{~ms}$
		Fluid	Mineral Oil, 60 - 225 SSU 1000 SSU maximum
Input Command	$\pm 50 \mathrm{~mA}$ std.		
Frequency Response @ 90° phase shift	$>100 \mathrm{~Hz}$ (See Performance Curves)	Operating Temperature	$\begin{aligned} & -1^{\circ} \mathrm{C} \text { to }+82^{\circ} \mathrm{C} \\ & \left(+30^{\circ} \mathrm{F} \text { to }+180^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$
Non-Linearity	$\leq 10 \%$	Protection Class	NEMA 4, IP65
Threshold	$\leq 0.5 \%$	Filtration	ISO 4406 15/12 or better

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
C01_Cat2550.indd, ddp, 04/19

Catalog MSG14-2550/US
Ordering Information

Servovalves
Series DY10

Accessories

Cable with Mating Connector: EHC154S
Mating Connector: MS3106E-14S-2S
Bolt Kit: Included with valve
Flushing Valve: 11-0500
Subplate: 55-0100-8S SAE-8 Side ports
Null Adjust Tool: 6522A13
Electronic Drivers: 23-7030, BD90*, BD101*
When used in conjunction with Series BD90 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents $>15 \mathrm{~mA}$

Flushing valve is rated for 3000 psi operation.

Special Options:

Consult factory for price, delivery and availability of special options.

Special coil
Special wiring
Special flow rate
Dual flow rate
Dual gain
Zener barriers
High frequency torque motor (Models 5, 10, 12 \& 15 only)

Wiring Option C (Standard)

Dyval and
Pegasus standard.

Wiring Option D

Moog, Atchley and Vickers standard.

In both cases, polarity shown connects P to C 2 port.

Frequency Response

Installation Wiring Options

This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Option C

Option D

Polarity shown connects flow from P to C 2 port.

Inch equivalents for millimeter dimensions are shown in (**)

Mounting Interface

Inch eqivalents for millimeter dimensions are shown in (**)

Servovalves

Series DY15

General Description

Series DY15 are two stage, 4-way, flapper and nozzle style servovalves. This valve is rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool steel construction or the optional stainless steel spool and body.

Features

Specifications

Flow Rating @ 70 Bar (1000 PSID)	57, 75 and 95 LPM (15, 20 and 25 GPM)	Null Shift with temperature with pressure	$\begin{aligned} & \leq 2 \% \text { per } 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & \leq 2 \% \text { per } 70 \text { Bar }(1000 \mathrm{PSI}) \end{aligned}$
Supply Pressure	$\begin{aligned} & \text { 10 - } 210 \operatorname{Bar}(145-3000 \mathrm{PSI}) \\ & \text { opt. } 350 \operatorname{Bar}(5000 \text { PSI) } \end{aligned}$		
		Presssure Gain \% change in pressure per 1% change in input command	30\% minimum, 70% maximum
Leakage Flow @ 70 Bar (1000 PSID)	$\begin{aligned} & 0.95-1.7 \mathrm{LPM} \\ & (0.25-0.45 \mathrm{GPM}) \end{aligned}$		
Tank Port Pressure	210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance	Step Response	$10-90 \%$, < 18 ms < 18 ms up to 75 LPM (20 GPM) < 20 ms up to 95 LPM (25 GPM)
Input Command	$\pm 50 \mathrm{~mA} \mathrm{std}$.	Fluid	Mineral Oil, 60-225 SSU
Frequency Response @ 90° phase shift	$\begin{aligned} & >45 \mathrm{~Hz} \\ & \text { (See Performance Curves) } \end{aligned}$		1000 SSU maximum
		Operating Temperature	$-1^{\circ} \mathrm{C}$ to $+82^{\circ} \mathrm{C}$
Non-Linearity	$\leq 10 \%$		$\left(+30^{\circ} \mathrm{F}\right.$ to $\left.+180^{\circ} \mathrm{F}\right)$
Threshold	$\leq 0.5 \%$	Protection Class	NEMA 4, IP65
		Filtration	ISO 4406 15/12 or better

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
C01_Cat2550.indd, ddp, 04/19

Accessories

Cable with Mating Connector: EHC154S
Mating Connector: MS3106E-14S-2S
Bolt Kit: Included with valve
Flushing Valve: 11-0600
Subplate: 55-0300-2 SAE-16 Side ports
Null Adjust Tool: 6522A13
Electronic Drivers: 23-7030, BD90*, BD101*
When used in conjunction with Series BD90 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents >15 mA

Flushing valve is rated for 3000 psi operation.

Special Options:

Consult factory for price, delivery and availability of special options.

Special coil
Special wiring
Special flow rate
Dual flow rate
Dual gain
Zener barriers
High frequency torque motor (Models 5, 10, 12 \& 15 only)

Wiring Option C
(Standard)

Dyval and
Pegasus standard.

Wiring Option D

Moog, Atchley and Vickers standard.

In both cases, polarity shown connects P to C 2 port.

DY15 Flow vs. Pressure Drop
at 100\% command

DY15
All curves $\pm 40 \%$ Amplitude

Installation Wiring Options

This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Option C

Option D

Polarity shown connects flow from P to C 2 port.

Inch equivalents for millimeter dimensions are shown in (**)

Connector over port C1

Mounting Interface

Inch eqivalents for millimeter dimensions are shown in (**)

\[

\]

Servovalves

Series DY25

General Description

Series DY25 are two stage, 4-way, flapper and nozzle style servovalves. They have the same port pattern and body dimensions as the DY15, but use a higher force torque motor pilot. These valves are rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool steel construction, and the optional stainless steel spool and body.

Features

- Lapped spool and body
- No ball glitch
- Tool steel, or stainless steel, spool and body
- Nozzle and flapper design
- Unique port pattern (see next page) (1 in. port circle)
- Survives high tank port pressures

Specifications

Flow Rating @ 70 Bar (1000 PSID)	57 and 75 LPM (25 and 30 GPM)	Null Shift with temperature with pressure	$\begin{aligned} & \leq 2 \% \text { per } 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & \leq 2 \% \text { per } 70 \operatorname{Bar}(1000 \mathrm{PSI}) \end{aligned}$
Supply Pressure	$\begin{aligned} & 10-210 \operatorname{Bar}(145-3000 \mathrm{PSI}) \\ & \text { opt. } 350 \operatorname{Bar}(5000 \mathrm{PSI}) \end{aligned}$		
		Presssure Gain \% change in pressure per 1\% change in input command	30\% minimum, 70% maximum
Leakage Flow @ 70 Bar (1000 PSID)	$\begin{aligned} & 0.95-1.7 \mathrm{LPM} \\ & (0.25-0.45 \mathrm{GPM}) \end{aligned}$		
Tank Port Pressure	210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance	Step Response	10-90\%, < 18 ms @ 95 LPM (25 GPM) < 20 ms @ 114 LPM (30 GPM)
Input Command	$\pm 50 \mathrm{~mA}$ std.	Fluid	Mineral Oil, 60-225 SSU 1000 SSU maximum
Frequency Response @ 90° phase shift	$\begin{aligned} & >35 \mathrm{~Hz} \\ & \text { (See Performance Curves) } \end{aligned}$		
		Operating Temperature	$\begin{aligned} & -1^{\circ} \mathrm{C} \text { to }+82^{\circ} \mathrm{C} \\ & \left(+30^{\circ} \mathrm{F} \text { to }+180^{\circ} \mathrm{F}\right) \end{aligned}$
Non-Linearity	$\leq 10 \%$		
Threshold	$\leq 0.5 \%$	Protection Class	NEMA 4, IP65
		Filtration	ISO 4406 15/12 or better

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
C01_Cat2550.indd, ddp, 04/19

Accessories

Cable with Mating Connector: EHC154S
Mating Connector: MS3106E-14S-2S
Bolt Kit: Included with valve
Flushing Valve: 11-0600
Subplate: 55-0300-2 SAE-16 Side ports
Null Adjust Tool: 6522A13
Electronic Drivers: 23-7030, BD90*, BD101*
When used in conjunction with Series BD90 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents $>15 \mathrm{~mA}$

Flushing valve is rated for 3000 psi operation.

Special Options:

Consult factory for price, delivery and availability of special options.

Special coil
Special wiring
Special flow rate
Dual flow rate
Dual gain
Zener barriers
Wiring Option C
(Standard)

Dyval and Pegasus standard.

Wiring Option D

Moog, Atchley and Vickers standard.

In both cases, polarity shown connects P to C 2 port.

DY25 Flow vs. Pressure Drop at 100% command
Flow Path: $\mathrm{P} \rightarrow \mathrm{C} 1 \rightarrow \mathrm{C} 2 \rightarrow \mathrm{~T}$

DY25
All curves $\pm 40 \%$ Amplitude

Installation Wiring Options

This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Option C

Option D

Polarity shown connects flow from P to C 2 port.

Inch equivalents for millimeter dimensions are shown in (**)

© --

Connector over C1 port

Mounting Interface

Inch eqivalents for millimeter dimensions are shown in (**)

Servovalves

Series DY45

General Description

Series DY45 are two stage, 4-way, flapper and nozzle style servovalves. These valves are rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool steel construction, and the optional stainless steel spool and body.

Features

- Lapped spool and body
- No ball glitch
- Tool steel, or stainless steel, spool and body
- Nozzle and flapper design
- Unique port pattern (see mounting pattern) (1.8" port circle)
- Survives high tank port pressures

Specifications

Flow Rating @ 70 Bar (1000 PSID)	150, 190 and 225 LPM (40, 50 and 60 GPM)	Null Shift with temperature with pressure	$\begin{aligned} & \leq 2 \% \text { per } 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & \leq 2 \% \text { per } 70 \mathrm{Bar}(1000 \mathrm{PSI}) \end{aligned}$
Supply Pressure	$10-210 \operatorname{Bar}(145-3000 \mathrm{PSI})$ opt. 350 Bar (5000 PSI)		
		Presssure Gain \% change in pressure per 1% change in input command	30% minimum, 70% maximum
Leakage Flow @ 70 Bar (1000 PSID)	$\begin{aligned} & 1.3-2.7 \mathrm{LPM} \\ & (0.35-0.70 \mathrm{GPM}) \end{aligned}$		
Tank Port Pressure	210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance	Step Response	$10-90 \%,<25 \mathrm{~ms}$
		Fluid	Mineral Oil, 60 - 225 SSU 1000 SSU maximum
Input Command	$\pm 50 \mathrm{~mA}$ std.		
Frequency Response @ 90° phase shift	$>30 \mathrm{~Hz}$ at $\pm 10 \%$ amplitude	Operating Temperature	$\begin{aligned} & -1^{\circ} \mathrm{C} \text { to }+82^{\circ} \mathrm{C} \\ & \left(+30^{\circ} \mathrm{F} \text { to }+180^{\circ} \mathrm{F}\right) \end{aligned}$
Non-Linearity	$\leq 10 \%$	Protection Class	NEMA 4, IP65
Threshold	$\leq 0.5 \%$	Filtration	ISO 4406 15/12 or better

Accessories

Cable with Mating Connector: EHC154S
Mating Connector: MS3106E-14S-2S
Bolt Kit: Included with valve
Flushing Valve: 11-0700
Subplate: 55-0200-2 SAE-24 Side ports
Null Adjust Tool: 6522A13
Electronic Drivers: 23-7030, BD90*, BD101*
When used in conjunction with Series BD90 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents >15 mA

Flushing valve is rated for 3000 psi operation.

Special Options:

Consult factory for price, delivery and availability of special options.

Special coil
Special wiring
Special flow rate
Dual flow rate
Dual gain
Zener barriers

Wiring Option C

 (Standard)

Dyval and
Pegasus standard.

Wiring Option D

Moog, Atchley and Vickers standard.

In both cases, polarity shown connects P to C 2 port.

Performance Curves

DY45 Flow vs. Pressure Drop

at 100% command

Installation Wiring Options

This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Option C

Option D

Polarity shown connects flow from P to C 2 port.

Inch equivalents for millimeter dimensions are shown in (**)

Connector over C1 port

Mounting Interface

Inch eqivalents for millimeter dimensions are shown in (**)

Technical Information

Servovalves

Series SE05, SE10 and SE15

General Description

Series SE05, SE10 and SE15 are two stage, 4-way, flapper and nozzle style servovalves. These valves have high performance spool and sleeve designs.
A special jewel feedback design enhances durability and prevents ball glitch problems, which can occur in other types of servovalves. These valves are rated for 315 Bar (4500 PSI) service.

Features

- Lapped spool and sleeve
- Jewel feedback ball for durability
- Aluminum body
- Medium and High performance
- SE05 15.88 mm (0.625 in.) port circle
- SE10 19.81 mm (0.780 in.) port circle
- SE15 23.80 mm (0.937 in.) port circle

Specifications

Flow Rating $\pm 10 \%$ @ 70 Bar (1000 PSI)	$\begin{aligned} & 4,10,20,40,60 \text { LPM } \\ & (1.0,2.5,5,10,15 \text { GPM }) \end{aligned}$
Supply Pressure	$\begin{aligned} & 10-315 \text { Bar } \\ & (145-4500 \text { PSI) } \end{aligned}$
Tank Port Pressure	210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance
Null Leakage Flow per 70 Bar (1000 PSI)	$\begin{aligned} & 0.6-1.0 \text { LPM } \\ & (0.16-0.26 \text { GPM }) \end{aligned}$
Pilot Flow @ 210 Bar (3000 PSI)	$\begin{aligned} & 0.4-0.7 \text { LPM } \\ & (0.1-0.2 \text { GPM }) \end{aligned}$
Input Command @ 210 Bar (3000 PSI)	$\pm 40 \mathrm{~mA}$ std.
Frequency Response @ 90° phase shift	$\begin{aligned} & >100 \mathrm{~Hz} \\ & \text { (See Performance Curves) } \end{aligned}$
Non-Linearity	$\leq 10 \%$
Hysteresis	$\leq 3 \%$
Threshold	$\leq 0.5 \%$
Null Shift with temperature with pressure	$\begin{aligned} & \leq 2 \% \text { per } 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & \leq 2 \% \text { per } 70 \mathrm{Bar}(1000 \mathrm{PSI}) \\ & \hline \end{aligned}$
Pressure Gain change in pressure per 1% change in input command	60\% typical
Step Response	$10-100 \%,<6 \mathrm{~ms}$
Fluid	Petroleum based Mineral Oil, $10-110 \mathrm{cSt}$ at $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$
Fluid Cleanliness	ISO 4406 15/12 or better
Operating Temperature	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+130^{\circ} \mathrm{C} \\ & \left(-22^{\circ} \mathrm{F} \text { to }+266^{\circ} \mathrm{F}\right) \end{aligned}$
Protection Class	NEMA 4, IP65

Flow vs. Pressure Drop

at 100% command
Flow Path: $\mathrm{P} \rightarrow \mathrm{C} 1 \rightarrow \mathrm{C} 2 \rightarrow \mathrm{R}$

WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3 -Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
C01_Cat2550.indd, ddp, 04/19

Weight: 1.0 kg (2.2 lbs.)
Cable with mating connector: EHC154S
Mating connector: MS3106E-14S-2S
Electronics: BD101, 23-5030, 23-7030, PMC10, BD90, or BD95
SE05
Bolt kit: 4 of M5 x 60 mm , or 4 of \#10-32x2.25"
Flushing valve: 11-0500
Metric Subplate: DS02SPS8M (M18x1.5 ISO 6149 side ports)
SAE Subplate: DS02SPS8S (\#8 SAE side ports)
SE10
Bolt kit: 4 of M5 x 60 mm , or 4 of \#10-32 $\times 2.25^{\prime \prime}$
Flushing valve: 11-0500
Metric Subplate: DS71SPS8M (M18x1.5 ISO 6149 side ports)
SAE Subplate: DS71SPS8S (\#8 SAE side ports)
SE15
Bolt kit: 4 of M6 x 60 mm , or 4 of $1 / 4-20 \times 2.25$ "
Flushing valve: 11-0500
Metric Subplate: DS72SPS8M (M18x1.5 ISO 6149 side ports)
SAE Subplate: DS72SPS8S (\#8 SAE side ports)

Servovalves
Series SE05, SE10 and SE15

Frequency Response at 210 Bar (3000 PSI)
Standard Response
SE05: 4-20 LPM (1-5 GPM)

Standard Response
SE10: 40 LPM (10 GPM)

High Response
SE05: 4-20 LPM (1-5 GPM)

High Response
SE10: 40 LPM (10 GPM)

Standard Response
SE15: 60 LPM (15 GPM)

Performance Curves

Step Response at 210 Bar (3000 PSI) Standard Response
SE05, SE10 \& SE15: 4 - 40 LPM (1-10 GPM)

High Response
SE05, SE10 \& SE15: 4-40 LPM (1-10 GPM)

Installation Wiring Options

This servovalve has two coils. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Servovalves

Series SE05, SE10 and SE15

Inch equivalents for millimeter dimensions are shown in (**)

SE05

SE10

SE15

1. Suggested mounting bolts: For SE05 and SE10 use M5 x 60 mm or \#10-32 x 2.25" long high tensile steel, socket-head cap screws. For SE15 use M6 x 60 mm or $1 / 4-20 \times 2.25^{\prime \prime}$ long high tensile steel, socket-head cap screws.
2. 4-way electrical connector mates with MS3106E-14S2 S or equivalent. Is available at 180° to position shown (advise desired position at time of order).
3. Base O-Rings:

SE05 use Parker 2011V-9 ($7.66 \mathrm{~mm} \mathrm{I} / \mathrm{D} \times 1.78$ section) SE10 use Parker 2012V-9 (9.25 mm I/D $\times 1.78$ section) SE15 use Parker 2013V-9 (10.82 mm I/D $\times 1.78$ section)
4. Null adjust requires $10 \mathrm{~A} / \mathrm{F}$ ring spanner (10 mm box end wrench) and 2.5 hexagon key. Flow out of C 1 will increase with clockwise rotation of key.
5. See mounting dimensions for port size and locations.

SE05 Mounting Surface

1. The recommended full-thread depth is 16 mm (0.630 in .).
2. The minimum depth of hole G is 4 mm (0.157 in .).
3. Surface roughness $\mathrm{Ra}<0.8 \mu \mathrm{~m}$ [N6], as specified in ISO 468 and ISO 1302.
4. Surface flatness: $0.025 \mathrm{~mm}(0.001)$ as specified in ISO 1101.
15.88 (0.625) port circle

SE10 Mounting Surface

1. The recommended full-thread depth is 16 mm (0.630 in .).
2. The minimum depth of hole G is 4 mm (0.157 in .).
3. Surface roughness $\mathrm{Ra}<0.8 \mu \mathrm{~m}$ [N6], as specified in ISO 468 and ISO 1302.
4. Surface flatness: $0.025 \mathrm{~mm}(0.001)$ as specified in ISO 1101.
19.81 (0.780) port circle

SE15 Mounting Surface

1. The recommended full-thread depth is 18 mm (0.709 in .).
2. The minimum depth of hole G is 4 mm (0.157 in .).
3. Surface roughness $\mathrm{Ra}<0.8 \mu \mathrm{~m}$ [N6], as specified in ISO 468 and ISO 1302.
4. Surface flatness: 0.025 mm (0.001 in .) as specified in ISO 1101.
23.80 (0.937) port circle

Catalog MSG14-2550/US
Dimensions

Servovalves
Series SE05, SE10 and SE15

SE05

Metric Dimensions (mm)			$(\pm 0.1 \mathrm{~mm})$						
Axis	P	C1	R	C2	G	F1	F2	F3	F4
Axis	$\bigcirc 5$ max	$\varnothing 5$ max	$\varnothing 5$ max	$\varnothing 5$ max	$\varnothing 3.5$	M5	M5	M5	M5
x	21.4	13.5	21.4	29.3	11.5	0	42.8	42.8	0
y	9.2	17.1	25.0	17.1	4.4	0	0	34.2	34.2

U.S. Dimensions (inches)			($\pm 0.004 \mathrm{in}$.)						
Axis	P	C1	R	C2	G	F1	F2	F3	F4
	$\varnothing 0.195$ max	$\varnothing 0.195$ max	$\varnothing 0.195$ max	$\varnothing 0.195$ max	$\varnothing 0.136$	\# 10-32	\# 10-32	\# 10-32	\# 10-32
x	0.843	0.531	0.843	1.153	0.453	0	1.685	1.685	0
y	0.362	0.673	0.984	0.673	0.173	0	0	1.347	1.347

SE10

Metric Dimensions (mm)			$(\pm 0.1 \mathrm{~mm})$						
is	P	C1	R	C2	G	F1	F2	F3	F4
Axis	$\bigcirc 7.5$ max	$\bigcirc 7.5$ max	$\varnothing 7.5$ max	$\varnothing 7.5$ max	$\varnothing 3.5$	M5	M5	M5	M5
x	21.4	11.5	21.4	31.3	11.5	0	42.8	42.8	0
y	7.2	17.1	27.0	17.1	4.4	0	0	34.2	34.2

U.S. Dimensions (inches)						0.004 in.)			
Axis	P	C1	R	C2	G	F1	F2	F3	F4
	$\varnothing 0.290$ max	$\varnothing 0.290$ max	$\varnothing 0.290$ max	$\varnothing 0.195$ max	$\varnothing 0.14$	\# 10-32	\# 10-32	\# 10-32	\# 10-32
X	0.843	0.453	0.843	1.232	0.453	0	1.685	1.685	0
y	0.283	0.673	1.063	0.673	0.173	0	0	1.347	1.347

SE15

Metric Dimensions (mm)			$(\pm 0.1 \mathrm{~mm})$						
Axis	P	C1	R	C2	G	F1	F2	F3	F4
Axis	Ø 8 max	Ø 8 max	Ø 8 max	Ø 8 max	Ø 3.5	M6	M6	M6	M6
x	21.4	9.5	21.4	33.3	11.5	0	42.8	42.8	0
y	5.1	17.1	29.0	17.1	4.4	0	0	34.2	34.2

U.S. Dimensions (inches)						($\pm 0.004 \mathrm{in}$.)			
Axis	P	C1	R	C2	G	F1	F2	F3	F4
	$\varnothing 0.312$ max	$\varnothing 0.312$ max	$\varnothing 0.312$ max	$\varnothing 0.312$ max	$\bigcirc 0.14$	1/4-20	1/4-20	1/4-20	1/4-20
x	0.843	0.374	0.843	1.311	0.453	0	1.685	1.685	0
y	0.201	0.673	1.142	0.673	0.173	0	0	1.347	1.347

Catalog MSG14-2550/US
Technical Information

Servovalves

Series SE2N

General Description

Series SE2N is a two stage, 4-way, flapper and nozzle style servovalve. The SE2N has a narrow body that is a popular size for steam turbine control applications. This valve uses a high performance spool and sleeve design.
A special jewel feedback design enhances durability and prevents ball glitch problems, which can occur in other types of servovalves. This valve is rated for 210 Bar (3000 PSI) service.

Features

- Lapped spool and sleeve
- Jewel feedback ball for durability
- Aluminum body
- Medium and High performance
- Steam turbine pattern 34.93 mm (1.375 in.) port circle

Specifications

Flow Rating $\pm 10 \%$ @ $70 \operatorname{Bar}(1000 \mathrm{PSI})$	$\begin{aligned} & 95,125 \text { LPM } \\ & (25,33 \text { GPM }) \end{aligned}$
Supply Pressure	$\begin{aligned} & 10-210 \mathrm{Bar} \\ & (145-3000 \mathrm{PSI}) \end{aligned}$
Tank Port Pressure	$\begin{aligned} & 210 \operatorname{Bar}(3000 \mathrm{PSI}) \text { Max. } \\ & \text { < } 10 \text { Bar (145 PSI) for } \\ & \text { best performance } \end{aligned}$
Null Leakage Flow per 70 Bar (1000 PSI)	2.4 LPM (0.6 GPM)
Pilot Flow @ 210 Bar (3000 PSI)	0.4 LPM (0.1 GPM)
Input Command	$\pm 40 \mathrm{~mA}$ std.
Frequency Response @ 90° phase shift	$\begin{aligned} & \hline>50 \mathrm{~Hz} \\ & \text { (See Performance Curves) } \end{aligned}$
Non-Linearity	$\leq 10 \%$
Hysteresis	$\leq 3 \%$
Threshold	$\leq 0.5 \%$
Null Shift with temperature with pressure	$\begin{aligned} & \leq 2 \% \text { per } 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & \leq 2 \% \text { per } 70 \operatorname{Bar}(1000 \mathrm{PSI}) \end{aligned}$
Pressure Gain change in pressure per 1% change in input command	60\% typical
Step Response	$10-100 \%,<30 \mathrm{~ms}$
Fluid	Petroleum based Mineral Oil, $10-110 \mathrm{cSt}$ at $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$
Fluid Cleanliness	ISO $440615 / 12$ or better
Operating Temperature	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+130^{\circ} \mathrm{C} \\ & \left(-4^{\circ} \mathrm{F} \text { to }+266^{\circ} \mathrm{F}\right) \end{aligned}$
Protection Class	NEMA 4, IP65

Flow vs. Pressure Drop
at 100% command
Flow Path: $\mathrm{P} \rightarrow \mathrm{C} 1 \rightarrow \mathrm{C} 2 \rightarrow \mathrm{R}$

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
C01_Cat2550.indd, ddp, 04/19

Weight: 1.1 kg (2.4 lbs .)
Cable with mating connector: EHC154S
Mating connector: MS3106E-14S-2S
Bolt kit: 4 of $\mathrm{M} 8 \times 70 \mathrm{~mm}$, or 4 of $5 / 16-18 \times 2.75^{\prime \prime}$
Flushing valve: Consult factory
U.S. subplate: AS73SPS8S (SAE \#8 side ports)

Metric subplate: AS73SPS8M (M18 x 1.5 ISO 6149 side ports)
Electronics: BD101, 23-7030, BD90, or BD95

Performance Curves

Frequency Response at 210 Bar (3000 PSI)
Standard Response
SE2N - 95 LPM (25 GPM)

Step Response at 210 Bar (3000 PSI) Standard Response
SE2N - 95 LPM (25 GPM)

Installation Wiring Options

This servovalve has two coils. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Polarity shown connects flow from P to C 2 port.

Servovalves

Series SE2N

1. Suggested mounting bolts $\mathrm{M} 8 \times 70 \mathrm{~mm}$ or $5 / 16-18 \times 2.75^{\prime \prime}$ long high tensile steel, socket-head cap screws.
2. The 4-way electrical connector mates with MS3106E-14S-2S or equivalent. Is available at 180° to position shown (advise desired position at time of order).
3. Base O-Rings: 14.6 I/D $\times 2.4$ section
4. Null adjust requires 2.5 hexagon key. Flow out of C 2 will increase with clockwise rotation of key.

Metric Dimensions (mm)			$(\pm 0.1 \mathrm{~mm})$					
Axis	P	C1	R	C2	F1	F2	F3	F4
	Ø 12.7 max	Ø 12.7 max	$\bigcirc 12.7$ max	Ø 12.7 max	M10	M10	M10	M10
x	44.5	27.0	44.5	61.9	0	88.9	88.9	0
y	4.8	22.3	39.7	22.3	0	0	44.5	44.5

U.S. Dimensions (inches)										
Axis	P 0.004 in.)									
	$\varnothing 0.5 \max$	$\varnothing 0.5 \max$	$\varnothing 0.5 \max$	$\varnothing 0.5 \max$	$3 / 8-16$	$3 / 8-16$	$3 / 8-16$	$3 / 8-16$		
x	1.750	1.063	1.750	2.437	0	3.500	3.500	0		
y	0.189	0.876	1.563	0.876	0	0	1.750	1.750		

Catalog MSG14-2550/US
Technical Information

Servovalves
Series SE20

General Description

Series SE20 is a two stage, 4-way, flapper and nozzle style servovalve. The SE20 has a wide range of flow ratings and a high performance spool and sleeve design.
A special jewel feedback design enhances durability and prevents ball glitch problems, which can occur in other types of servovalves. This valve is rated for 315 Bar (4500 PSI) service with an option for $500 \operatorname{Bar}(7250 \mathrm{PSI})$.

Features

- Lapped spool and sleeve
- Jewel feedback ball for durability
- Aluminum body
- Medium and High performance
- ISO 10372 standard 22.23 mm (0.875 in.) port circle

Specifications

Flow Rating $\pm 10 \%$ @ 70 Bar (1000 PSI)	$\begin{aligned} & 3.8,9.5,19,38,63,75 \mathrm{LPM} \\ & (1,2.5,5,10,16.5,20 \text { GPM }) \end{aligned}$
Supply Pressure	$\begin{aligned} & 10-315 \text { Bar } \\ & \text { (145-4500 PSI) } \\ & 500 \text { Bar (7250 PSI) Optional } \end{aligned}$
Tank Port Pressure	210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance
Null Leakage Flow per 70 Bar (1000 PSI)	1.2 - 1.9 LPM (0.3-0.5 GPM)
Pilot Flow @ 210 Bar (3000 PSI)	$0.4-0.7$ LPM (0.1-0.2 GPM)
Input Command	$\pm 40 \mathrm{~mA} \mathrm{std}$.
Frequency Response @ 90° phase shift	$\begin{aligned} & >100 \mathrm{~Hz} \\ & \text { (See Performance Curves) } \end{aligned}$
Non-Linearity	$\leq 10 \%$
Hysteresis	$\leq 3 \%$
Threshold	$\leq 0.5 \%$
Null Shift with temperature with pressure	$\begin{aligned} & \leq 2 \% \text { per } 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & \leq 2 \% \text { per } 70 \operatorname{Bar}(1000 \mathrm{PSI}) \end{aligned}$
Pressure Gain change in pressure per 1% change in input command	60\% typical
Step Response	See graphs
Fluid	Petroleum based Mineral Oil, $10-110 \mathrm{cSt}$ at $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$
Fluid Cleanliness	ISO 4406 15/12 or better
Operating Temperature	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+130^{\circ} \mathrm{C} \\ & \left(-22^{\circ} \mathrm{F} \text { to }+266^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$
Protection Class	NEMA 4, IP65

Flow vs. Pressure Drop

 at 100% command Flow Path $\mathrm{P} \rightarrow \mathrm{C} 1 \rightarrow \mathrm{C} 2 \rightarrow \mathrm{R}$

Weight: 1.0 kg (2.2 lbs.)
Cable with mating connector: EHC154S
Bolt kit: 4 of $\mathrm{M} 8 \times 60 \mathrm{~mm}$, or 4 of $5 / 16-18 \times 2.25^{\prime \prime}$
Flushing valve: 1200127 (does not cover $5^{\text {th }}$ port)
U.S. Subplate, 5 ports: 1402303 (4) \#12 SAE side ports, (1) \#4 SAE side ports
U.S. Subplate, 4 ports: 810090-3 (4) \#12 SAE side ports

Metric Subplate, 4 ports: DS04SPS12M (M27 x 2.0 ISO 6149 side ports)
Electronics: BD101, 23-7030, BD90, or BD95

Catalog MSG14-2550/US
Performance Curves

Servovalves
Series SE20

Frequency Response at 210 Bar (3000 PSI)
Standard Response
SE20 - 4 LPM (1.0 GPM)

Standard Response
SE20 - 63 LPM (16.5 GPM)

High Response
SE20 - 4 LPM (1.0 GPM)

High Response
SE20 - 40 LPM (10 GPM)

Performance Curves

Step Response at 210 Bar (3000 PSI)

Standard Response

High Response

Installation Wiring Options

This servovalve has two coils. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Polarity shown connects flow from P to C 2 port.

Inch equivalents for millimeter dimensions are shown in (**)

Mounting Surface

1. The minimum depth of hole G is 2 mm (0.079 in .). The ISO recommended full-thread depth is 22 mm (0.866 in .).
2. Surface roughness $R a<0.8 \mu \mathrm{~m}$ [N6], as specified in ISO 468 and ISO 1302.
3. Surface flatness: 0.025 mm (0.001 in .) as specified in ISO 1101.

(3.15)
4. Suggested mounting bolts $\mathrm{M} 8 \times 60 \mathrm{~mm}$ or $5 / 16-18 \times 2.00$ " high tensile steel, socket-head cap screws.
5. The 4-way electrical connector mates with MS3106-14S-2S or equivalent. It is available at $\pm 90^{\circ}$ and 180° to position shown (advise desired position at time of order).
6. Base O-Rings: 10.82 I/D $\times 1.78$ section (2013N-9 or 2013V-9) 5 pcs.
7. Null adjust requires $10 \mathrm{~A} / \mathrm{F}$ ring spanner (10 mm box-end wrench) and 2.5 hexagon key. Flow out of C 1 will increase with clockwise rotation of key.

Metric Dimensions (mm)			$(\pm 0.1 \mathrm{~mm})$							
Axis	P	C1	R	C2	G	X	F1	F2	F3	F4
	$\varnothing 8.2$ max	$\varnothing 8.2$ max	$\varnothing 8.2$ max	Ø 8.2 max	Ø 3.5	$\varnothing 5$	M8	M8	M8	M8
x	22.2	11.1	22.2	33.3	12.3	33.3	0	44.4	44.4	0
y	21.4	32.5	43.6	32.5	19.8	8.7	0	0	65.0	65.0

U.S. Dimensions (inches)			($\pm 0.004 \mathrm{in}$.							
Axis	P	C1	R	C2	G	X	F1	F2	F3	F4
	$\begin{gathered} \varnothing 0.32 \\ \text { max. } \end{gathered}$	$\begin{gathered} \varnothing 0.32 \\ \max . \end{gathered}$	$\begin{gathered} \varnothing 0.32 \\ \max . \end{gathered}$	$\begin{gathered} \varnothing 0.32 \\ \max . \end{gathered}$	$\begin{gathered} \varnothing 0.14 \\ \max . \end{gathered}$	$\varnothing 0.2$	5/16-18	5/16-18	5/16-18	5/16-18
x	0.875	0.437	0.875	1.311	0.484	1.310	0	1.750	1.750	0
y	0.846	1.280	1.717	1.280	0.780	0.343	0	0	2.562	2.562

[^24]
Servovalves

Series SE31

General Description

Series SE31 is a two stage, 4-way, flapper and nozzle style servovalve. This valve is designed to fit onto DIN NG10 or NFPA D05 port patterns. The SE31 has a wide range of flow ratings and a high performance spool and sleeve design.
A special jewel feedback design enhances durability and prevents ball glitch problems, which can occur in other types of servovalves. This valve is rated for
 210 Bar (3000 PSI) service.

Features

- Lapped spool and sleeve
- Jewel feedback ball for durability
- Aluminum body
- Medium and High performance
- ISO 440 -05-05-0-94 (4-ports), DO5HE (no "Y" port)

Specifications

Flow Rating $\pm 10 \%$ @ 70 Bar (1000 PSI)	$\begin{aligned} & 10,20,40,60 \text { LPM } \\ & (2.5,5,10,15 \text { GPM }) \end{aligned}$
Supply Pressure	$\begin{aligned} & 10-210 \mathrm{Bar} \\ & (145-3000 \text { PSI) } \end{aligned}$
Tank Port Pressure	210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance
Null Leakage Flow per 70 Bar (1000 PSI)	1.2 - 1.9 LPM (0.3-0.5 GPM)
Pilot Flow @ 210 Bar (3000 PSI)	$0.4-0.7$ LPM (0.1-0.2 GPM)
Input Command	$\pm 100 \mathrm{~mA} \mathrm{std}$.
Frequency Response @ 90° phase shift	$\begin{aligned} & \hline>100 \mathrm{~Hz} \\ & \text { (See Performance Curves) } \end{aligned}$
Non-Linearity	$\leq 10 \%$
Hysteresis	$\leq 3 \%$
Threshold	$\leq 0.5 \%$
Null Shift with temperature with pressure	$\begin{aligned} & \leq 2 \% \operatorname{per} 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & \leq 2 \% \operatorname{per} 70 \operatorname{Bar}(1000 \mathrm{PSI}) \end{aligned}$
Pressure Gain change in pressure per 1% change in input command	60\% typical
Step Response	0-100\%, < 15 ms
Fluid	Petroleum based Mineral Oil, $10-110 \mathrm{cSt}$ at $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$
Fluid Cleanliness	ISO 4406 15/12 or better
Operating Temperature	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+130^{\circ} \mathrm{C} \\ & \left(-22^{\circ} \mathrm{F} \text { to }+266^{\circ} \mathrm{F}\right) \end{aligned}$
Protection Class	NEMA 4, IP65

Flow vs. Pressure Drop at 100% command Flow Path $\mathrm{P} \rightarrow \mathrm{C} 1 \rightarrow \mathrm{C} 2 \rightarrow \mathrm{R}$

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
C01_Cat2550.indd, ddp, 04/19

Weight: 1.1 kg (2.4 lbs.)
Cable with mating connector: EHC154S
Mating connector: MS3106E-14S-2S
Bolt kit: 4 of $\mathrm{M} 6 \times 50 \mathrm{~mm}$, or 4 of $1 / 4-20 \times 2.00$ "
Flushing valve: D3L8CV
Subplate, 5 ports: D31D6SA35 (4 side ports \#12 SAE, 1 pilot port on P side is \#4 SAE)
Subplate, 4 ports: D3H6SA35 (4 side ports \#12 SAE)
Electronics: BD101, 23-7030, BD90, or BD95

Catalog MSG14-2550/US
Performance Curves

Servovalves
Series SE31

Frequency Response at 210 Bar (3000 PSI)
Standard Response
SE31 - 4 LPM (1.0 GPM)

Standard Response
SE31 - 60 LPM (15 GPM)

High Response
SE31-4 LPM (1.0 GPM)

High Response
SE31 - 40 LPM (10 GPM)

Performance Curves

Step Response at 210 Bar (3000 PSI)

Standard Response
High Response

Installation Wiring Options

This servovalve has two coils. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Polarity shown connects flow from P to C 2 port.

Servovalves

Series SE31

Inch equivalents for millimeter dimensions are shown in (**)

Mounting Surface

1. The minimum depth of hole G is 2 mm (0.079 in .). The ISO recommended full-thread depth is 18 mm (0.709 in.).
2. Surface roughness $\mathrm{Ra}<0.8 \mu \mathrm{~m}$ [N6], as specified in ISO 468 and ISO 1302.
3. Surface flatness: 0.025 mm (0.001 in .) as specified in ISO 1101.

4. Suggested mounting bolts $\mathrm{M} 6 \times 50 \mathrm{~mm}$ or $1 / 4-20 \times 2.25^{\prime \prime}$ long high tensile steel, socket-head cap screws.
5. The 4-pin electrical connector mates with MS3106E-14S-2S or equivalent. The valve connector is available $\pm 90^{\circ}$ or 180° from the position shown.
6. Base O-Rings: 12 mm I.D. by 2.0 mm section, 90 durometer.
7. Null adjust requires a $10 \mathrm{~A} / \mathrm{F}$ ring spanner (10 mm box end wrench) and a 2.5 hexagon key. Flow out of C1 will increase with clockwise rotation of key.

Metric Dimensions (mm)			$(\pm 0.1 \mathrm{~mm})$						
Axis	P	C1	R	C2	X	F1	F2	F3	F4
	Ø 9 max	Ø 9 max	Ø 9 max	Ø 9 max	$\varnothing 3$	M6	M6	M6	M6
x	27.0	16.7	3.2	37.3	-8.8	0	54.0	54.0	0
y	6.3	21.4	32.4	21.4	6.3	0	0	46.0	46.0

U.S. Dimensions (inches)			($\pm 0.004 \mathrm{in}$.)						
Axis	P	C1	R	C2	X	F1	F2	F3	F4
	$\begin{gathered} \varnothing 0.354 \\ \max \end{gathered}$	$\varnothing 0.12$	1/4-20	1/4-20	1/4-20	1/4-20			
x	1.063	0.657	0.126	1.469	-0.347	0	2.126	2.126	0
y	0.248	0.843	1.275	0.843	0.248	0	0	1.811	1.811

[^25]Catalog MSG14-2550/US
Technical Information

Servovalves

Series SE60

General Description

Series SE60 is a two stage, 4-way, flapper and nozzle style servovalve. The SE60 has a wide range of flow ratings and a high performance spool and sleeve design.
A special jewel feedback design enhances durability and prevents ball glitch problems, which can occur in other types of servovalves. This valve is rated for 210 Bar (3000 PSI) service.

Features

- Lapped spool and sleeve
- Jewel feedback ball for durability
- Aluminum body
- Medium and High performance
- ISO 10372 size 6 standard 50.8 mm (2.000 in.) port circle

Specifications

Flow Rating $\pm 10 \%$ @ 70 Bar (1000 PSI)	$\begin{aligned} & 95,150,230 \text { LPM } \\ & (25,40,60 \text { GPM }) \end{aligned}$
Supply Pressure	$\begin{aligned} & 10-210 \mathrm{Bar} \\ & (145-3000 \mathrm{PSI}) \end{aligned}$
Tank Port Pressure	$\begin{aligned} & 210 \operatorname{Bar}(3000 \mathrm{PSI}) \text { Max. } \\ & \text { < } 10 \text { Bar (145 PSI) for } \\ & \text { best performance } \end{aligned}$
Null Leakage Flow per 70 Bar (1000 PSI)	2.4 - 3.6 LPM (0.6-1.0 GPM)
Pilot Flow @ 210 Bar (3000 PSI)	0.4 LPM (0.1 GPM)
Input Command	$\pm 40 \mathrm{~mA} \mathrm{std}$.
Frequency Response @ 90° phase shift	$\begin{array}{\|l\|} \hline>100 \mathrm{~Hz} \\ \text { (See Performance Curves) } \\ \hline \end{array}$
Non-Linearity	$\leq 10 \%$
Hysteresis	$\leq 4 \%$
Threshold	$\leq 1 \%$
Null Shift with temperature with pressure	$\begin{aligned} & \leq 2 \% \text { per } 55^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right) \\ & \leq 2 \% \text { per } 70 \operatorname{Bar}(1000 \mathrm{PSI}) \end{aligned}$
Pressure Gain change in pressure per 1% change in input command	60\% typical
Step Response	0-100\%, < 15 ms
Fluid	Petroleum based Mineral Oil, $10-110 \mathrm{cSt}$ at $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$
Fluid Cleanliness	ISO $440615 / 12$ or better
Operating Temperature	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+130^{\circ} \mathrm{C} \\ & \left(-22^{\circ} \mathrm{F} \text { to }+266^{\circ} \mathrm{F}\right) \end{aligned}$
Protection Class	NEMA 4, IP65

Flow vs. Pressure Drop at 100% command Flow Path $\mathrm{P} \rightarrow \mathrm{C} 1 \rightarrow \mathrm{C} 2 \rightarrow \mathrm{R}$

Weight: 3.4 kg (7.5 lbs.)
Cable with mating connector: EHC154S
Mating connector: MS3106E-14S-2S
Bolt kit: 4 of $\mathrm{M} 10 \times 60 \mathrm{~mm}$, or 4 of $3 / 8-16 \times 2.375^{\prime \prime}$
Flushing valve: Consult factory. Use 1278007 and 11-0700.
US Subplate, 4 ports: AS06SPS20S (\# 20 SAE side ports)
Metric Subplate, 4 ports: AS06SPS20M (M42 x 2.0 ISO 6149 side ports)
Electronics: BD101, 23-7030, BD90, or BD95

Catalog MSG14-2550/US
Technical Information

Servovalves

Series SE60

Performance Curves

Frequency Response at $210 \mathrm{Bar}(3000 \mathrm{PSI})$

Standard Response
SE60 - 95 LPM (25 GPM)

High Response
SE60 - 230 LPM (60 GPM)

Step Response at 210 Bar (3000 PSI)

Installation Wiring Options

This servovalve has two coils. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Servovalves
Series SE60

Inch equivalents for millimeter dimensions are shown in (**)

104.1
(4.10)

1. Suggested mounting bolts $\mathrm{M} 10 \times 60 \mathrm{~mm}$ or $3 / 8-16 \times 2.375$ " long high tensile steel, socket-head cap screws.
2. 4-way electrical connector mates with MS3106-14S-2S or equivalent. Is available at 180° to position shown (advise desired position at time of order).
3. Base O-Rings: 4 of Parker 2019V-7, 1 of Parker 2012V-7 (if external pilot is used).
4. Null adjust requires $12 \mathrm{~A} / \mathrm{F}$ ring spanner (12 mm box end wrench) and 3.0 hexagon key. Flow out of C2 will increase with clockwise rotation of key.
5. Optional field replaceable filter housing. Element P/N SRS1479.

Mounting Surface

1. The minimum depth of hole G is 2 mm (0.079 in .). The ISO recommended full-thread depth is 30 mm (1.181 in.).
2. Surface roughness $\mathrm{Ra}<0.8 \mu \mathrm{~m}$ [N6], as specified in ISO 468 and ISO 1302.
3. Surface flatness: 0.025 mm (0.001 in .) as specified in ISO 1101.

Metric Dimensions (mm)			$(\pm 0.1 \mathrm{~mm})$							
Axis	P	C1	R	C2	G	X	F1	F2	F3	F4
	$\varnothing 17.5$ max	$\bigcirc 17.5$ max	$\varnothing 17.5$ max	Ø 17.5 max	$\varnothing 8$	$\varnothing 5$	M10	M10	M10	M10
x	36.5	11.1	36.5	61.9	11.1	55.6	0	73.0	73.0	0
y	17.4	42.8	68.2	42.8	23.7	4.7	0	0	85.7	85.7

U.S Dimensions (inches)			($\pm 0.004 \mathrm{in}$)							
Axis	P	C1	R	C2	G	X	F1	F2	F3	F4
	$\begin{gathered} \varnothing 0.688 \\ \max \end{gathered}$	$\varnothing 0.39$	$\varnothing 0.20$	3/8-16	3/8-16	3/8-16	3/8-16			
x	1.437	0.437	1.437	2.437	0.437	2.187	0	2.875	2.875	0
y	0.687	1.687	2.687	1.687	0.937	0.187	0	0	3.375	3.375

[^26]
Proportional Directional Valves
Series Valve Application Description Page
PWD00A-400 D**FW, D*FB, WLL, RLL.... Programmable, Min, Max, Ramps, Setpoints D2 - D4
PWDXXA-40* D**FS, D*FC, RLL*R.......... Programmable, Feedback, Min, Max, Ramps D5 - D8
EW*104

\qquad
D**FS

\qquad
Adjustable; Min, Max, 2 Ramps..................................... D9 - D10
Proportional Pressure Control Valves Series Valve Application Description Page
ED00104 DWE, DWU, RE*W Adjustable; Min, Max, 2 Ramps D11-D12
PCD00A-400 VBY, VMY, RE*W, PE*W Programmable, Min, Max, Ramp D13 - D16
Proportional Throttle Valves Series Valve Application Description Page
PCD00A-400 TDA, TEA Programmable, Min, Max, Ramp D13 - D16
ET*104 TDA Adjustable; Min. Max., 2 Ramps ("L" Solenoid) D17 - D18
Servovalves
Series Valve Application Description Page
BD90 BD15/BD30/Dyval Closed Loop, Dual PID, Snap Track D19-D20
BD101 BD15/BD30/Dyval Closed Loop, PI, Snap Track D21 - D22
Auxiliary Function Cards
Series Valve Application Description Page
BD101 D*FP, D*FH, D*FX, BD**.... Closed Loop PI, Snap Track D21-D22
PID000A-40 Electronic Module for Closed Loop Control D23 - D26
PZD00A-40* all
Programmable, Signal Conditioning D27 - D30
Motion Controllers
Series Valve Application Description Page
C3F Compax Motion Controller. D31 - D49
Power Supplies
Series Valve Application Description PagePSD24 alall24 Volt Power SupplyD50 - D51
Card Holders
Series Valve Application Description Page
allDIN Card HoldersD52

Electronic Modules

Technical Information

Series PWD00A-400

General Description

Series PWD00A-400 electronic module for driving open loop proportional valves is compact and easy to install with DIN rail mounting and plug-in terminals. The digital design allows for programmable parameters such as solenoid drive current, mins and maxs, and ramps. Profiles controlled by on-off logic signals can be configured through internal velocity setpoints and ramps. The module provides flexibility for different applications and repeatability from unit to unit. The module parameters are programmed with an RS-232 interface and user friendly software (ProPxD) with default values for the standard valves.
The PWDOOA-400 module contains the functions required by typical open loop proportional valve applications (series D*FB, D*FW, D*1FW, WLL, RLL valves).

Features

- Programmable parameters.
- Analog or Profile Capability.
- RS-232 Interface.
- User friendly programming software.
- Plug-in terminals.

- Differential input on analog command.
- Compliant with European EMC Standards.

Specifications

General			
Model	Module package for snap-on mounting on EN 50022 rail	Mounting Position	Any
		Ambient Temperature Range	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Package Material	Polycarbonate		
Inflammability Class	V2 to V0 acc. UL 94	Protection Class	IP 20 acc. DIN 40050
Electrical			
Duty Ratio	100\%	Channel Recall Signal	$\begin{aligned} & \text { Off }-0 \text { to } 5.0 \mathrm{VDC} ; \\ & \text { On }-8.5 \text { to } 30 \mathrm{VDC} ; \mathrm{Ri}=30 \mathrm{~K} \text { ohm } \end{aligned}$
Supply Voltage	18 VDC to 30 VDC, ripple $<5 \%$ eff., surge free (29 VDC to 30 VDC for 24 V coils)		
		Status Signal	Off - 0 to 0.5 VDC ; On - Supply Voltage; rated max. 15 mA
Switch-on Current Typ.	22A for 0.2 mS	Adjustment Ranges Minimum Maximum Ramp Time Zero Offset Current	preset 0 to 50% 0 to 1000 50 to 100% 0 to 1000 0 to 32.5 s 0 to 32.5 +75 to -75% +1000 to -1000 $0.8 / 3.5 / 2.7 / 1.8 / 1.3$ A $0 / 1 / 2 / 3 / 4 / 5$
Current Consumption Max.	2.0A		
Pre-fusing	2.5A medium lag		
Command Signal	+10 to 0 to -10 VDC, ripple < 0.01% eff., surge free, $\mathrm{Ri}=150 \mathrm{~K}$ ohm Do not input a command greater than ± 10 VDC.	Interface	RS 232C, DSub 9p. male for null modem cable
		EMC	EN 50081-2, EN 50082-2
Input Signal Resolution	0.025\%	Connection	Screw terminals 0.2 to $2.5 \mathrm{~mm}^{2}$, plug-in
Differential Input Voltage Maximum	30V for terminals 5 and 6 against PE (terminal 8)	Cable Specification	16 AWG overall braid shield for supply voltage and solenoids 20 AWG overall braid shield for sensor and signal
Enable Signal	$\begin{aligned} & \text { Off }-0 \text { to } 5.0 \mathrm{VDC} \\ & \text { On }-8.5 \text { to } 30 \mathrm{VDC} ; \mathrm{Ri}=30 \mathrm{~K} \text { ohm } \end{aligned}$		
		Cable Length	50m (164 ft.)

[^27]
Ordering Information

Block Diagram — Wiring

Signal Flow Diagram

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

ProPxD Interface Program

The new ProPxD software permits comfortable parameter setting for the electronic module series PCD, PWD, PZD and PID.
Via the clearly arranged entry mask the parameters can be noticed and modified. Storage of complete parameter sets to floppy or hard disk is possible as well as printout or record as a text file for further documentation. Stored parameter sets may be loaded anytime and transmitted to the electronic module in the same manner as the basic parameters which are available for all usable valve series. Inside the electronic a nonvolatile memory stores the data with the option for recalling or modification.

Features

- User-friendly editing of all parameters.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR} 95$ upwards.
- Communication between PC and electronic via serial interface RS-232 and null modem cable.
- Simple to use interface program. Download free of charge www.parker.com/euro_hcd \rightarrow Services \rightarrow downloads

General Description

Series PWDXXA-40* electronic module for driving proportional valves with spool position feedback is compact and easy to install with DIN rail mounting and plug-in terminals. The digital design allows for programmable parameters such as solenoid drive current, mins, maxs, ramps and a range of position feedback signals. The module provides flexibility and repeatability from unit to unit. The module parameters are programmed with an RS-232 interface and user friendly software (ProPxD) with default values for standard valves.

The PWDXXA-40* module contains the functions required by typical internal closed loop proportional valve applications (series D*FC, D*1FS, RLL*R, WLL*R and TEL valves).

Features

- Interface and tuning for spool position feedback.
- Programmable parameters.
- $\pm 10 \mathrm{~V}, \pm 20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ position transducer input.
- RS-232 Interface.
- User friendly programming software.
- Plug-in terminals.
- Four independent ramps.
- Input Enable with Status indicator.
- Differential command input.
- Compliant with European EMC Standards.

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

©

Ordering Information

Weight: 160 g (. 35 lbs.$)$

Specifications

General			
Model	Module package for snap-on mounting on EN 50022 rail	Mounting Position	Any
		Ambient Temperature Range	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Package Material	Polycarbonate		
Inflammability Class	V2 to V0 acc. UL 94	Protection Class	IP 20 acc. DIN 40050
Electrical			
Duty Ratio	100\%	Status Signal	Off - 0 to 0.5 VDC; On - Supply Voltage; rated max. 15 mA
Supply Voltage	18 VDC to 30 VDC, ripple < 5\% eff., surge free		
		Monitor Signal	+10 to 0 to -10 VDC , rated max. 5 mA , signal resolution 0.4%
Switch-on Current Typ.	22A for 0.2 mS	Adjustment Ranges	
Current Consumption Max.	2.0A		Minimum Maximum Ramp Time Zero Offset Current Initial Current
Pre-fusing	2.5A medium lag		
Command Signal	+10 to 0 to -10 VDC, ripple < 0.01% eff., surge free, $\mathrm{Ri}=100 \mathrm{~K}$ ohm +20 to 0 to -20 mA, ripple < 0.01% eff., surge free, $\mathrm{Ri}=200 \mathrm{Ohm}$ 4 to 12 to 20 mA , ripple $<0.01 \%$ eff., surge free, $\mathrm{Ri}=200 \mathrm{Ohm}$ $<3.6 \mathrm{~mA}=$ solenoid output off, $>3.8 \mathrm{~mA}=$ solenoid output on (acc. NAMUR NE43)		
		Interface	RS 232C, DSub 9p. male for null modem cable
		EMC	EN 50081-2, EN 50082-2
		Connection	Screw terminals 0.2 to $2.5 \mathrm{~mm}^{2}$, plug-in
		Cable Specification	16 AWG overall braid shield for supply voltage and solenoids 20 AWG overall braid shield for sensor and signal
Input Signal Resolution	0.025\%		
Differential Input Voltage Max.	30V for terminals 5 and 6 against PE (terminal 8)	Cable Length	50m (164 ft.)
Enable Signal	$\begin{aligned} & \text { Off }-0 \text { to } 2.5 \mathrm{VDC} \\ & \text { On }-5 \text { to } 30 \mathrm{VDC} ; R \mathrm{Ri}=30 \mathrm{~K} \text { ohm } \end{aligned}$		
Options			
Technology Function	Code 1 - Software adjustable transfer function with 10 compensation points for linearization of valve behavior.		

Block Diagram — Wiring

Signal Flow Diagram

Electronic Modules

Technical Information

Series PWDXXA-40*

ProPxD Interface Program

The new ProPxD software permits comfortable parameter setting for the electronic module series PCD, PWD, PZD and PID.
Via the clearly arranged entry mask the parameters can be noticed and modified. Storage of complete parameter sets to floppy or hard disk is possible as well as printout or record as a text file for further documentation. Stored parameter sets may be loaded anytime and transmitted to the electronic module in the same manner as the basic parameters which are available for all usable valve series. Inside the electronic a nonvolatile memory stores the data with the option for recalling or modification.

Features

- User-friendly editing of all parameters.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\oplus}$ operating systems from Windows ${ }^{\circledR} 95$ upwards.
- Communication between PC and electronic via serial interface RS-232 and null modem cable.
- Simple to use interface program. Download free of charge www.parker.com/euro_hcd \rightarrow Services \rightarrow downloads

General Description

Series EW*104 electronic module is used to control pilot operated D**FS proportional directional valves with main stage spool position feedback. The module accepts a ± 10 volt command signal where spool position is controlled by a closed loop PID circuit on the module.

Features

- Spool overlap range can be manipulated with MIN potentiometer, adjustable by feeding a constant set value of 0.2 V .
- MAX limiting of spool stroke with full set value range. Can be set up after MIN has been set and feeding a constant set value of 10 V .
- DIP-switch from internal ramp generation to external ramp supply.
- Pulsed low-loss amplifier power stage with supporting constant current control for consistent temperatureindependent solenoid forces.
- Dither generator with applied frequency to improve static characteristics.
- Diagnosis of spool stroke by means of measuring sockets as well as LEDs for indicating working conditions.

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

Ordering Information

Code	Description
104	Amplifier, adjustable,
	MIN/MAX-limiting
	Up/Down ramps

Connection	31 Pole Male Connector, DIN 41617
Power Supply	Regulated: $18-26 \mathrm{~V}$ Unregulated: $22-38 \mathrm{~V}$
Command Signal	0 to +10 VDC and 0 to -10 VDC
Input Select Voltage	5 to 30 VDC
Power Required	40 VA
Reference Outputs	± 10 VDC @ 10 mA
Max. Solenoid Output Current	1.3A
Ambient Temp. Range	$0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F}\right),$ Standard Range
Ramps	0 to 5 seconds adjustable
Shielded Cable Connection	```Supply connections + valve: 1.5 sq. mm (16 AWG) Transducer + Command Signals: 0.5 sq. mm (20 AWG)```
Fuse	2A medium lag, DIN 41571/5x20 mm

Block Diagram - Wiring

Operating and Diagnostic Elements (Elevation A)

Notes:

- Turn off the electrical power to this board whenever the hydraulic supply to the valve is not on.
- Always turn off the power to this board before removing it from the card holder.

Connector (Elevation B)

9 Reference potential OV Transducer
11 Reference potential OV supply
13 Input ramp disable
14 Input command voltage $0 . . .+/-10$ VDC
16 Output +10V reference
17 Output -10V reference
18 Input 24 VDC supply
19 Input transducer signal
22 Input external ramp option
23 Output transducer supply
24 Output control solenoid B
25 Output control solenoid A
26 Output control solenoid A+B with possibility for external switch connection
27 Input external ramp option
31 Reference potential OV set value

Electronic Modules

Technical Information

General Description

Series ED00104 electronic module is used to control DSA/DWE/DWU pressure control valves. The module accepts a 0 to 10 volt command signal, and produces a proportionally linear output current used to drive the valve's proportional solenoid. Two ramp adjustments provide smooth transition between selected pressures. Note that the linearity of the valve itself determines the linearity of the system. Refer to the specific valve data for actual linearity performance.

Features

- Processing and amplification of the externally supplied positive set-values into output signals for the control solenoid.
- Can be combined with PZD00A-400 or external programmable control.
- DIP switch from internal ramp generation to external ramp setting.
- MIN/MAX limiters for matching the working range to the full set value range.
- Pulsed low-loss amplifier power stage with supporting constant current control for consistent, temperatureindependent, solenoid forces.
- Dither generator with applied frequency to improve static characteristics.
- Diagnosis by means of diagnostic sockets as well as LEDs for indicating working conditions.
Dimensions
Inch equivalents for millimeter dimensions are shown in (**)

Specifications

Connection	31 Pole Male Connector, DIN 41617
Power Supply	Regulated: $18-26 \mathrm{~V}$ Unregulated: 22-38V
Command Signal	0 to +10 VDC and 0 to -10 VDC
Input Select Voltage	5 to 30 VDC
Power Required	40 VA
Reference Outputs	+10 VDC 10 mA
Max. Solenoid Output Current	1.3 A with set value 10V
Ambient Temp. Range	$0^{\circ} \mathrm{C}$ to +70 ${ }^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to +158 $\left.{ }^{\circ} \mathrm{F}\right)$, Standard Range
Ramps	0 to 5 seconds adjustable
Shielded Cable Connection	Supply connections + valve: 1.5 sq. $\mathrm{mm}(16 \mathrm{AWG})$ Command Signals: 0.5 sq. $\mathrm{mm}(20 \mathrm{AWG})$
Fuse	2 A medium lag, DIN 41571/5x20 mm

Ordering Information

Code	Description
104	Amplifier, adjustable MIN/MAX-limits,
	Up/Down Ramps

Block Diagram — Wiring

Operating and Diagnostic Elements (Elevation A)

Notes:

-Turn off the electrical power to this board whenever the hydraulic supply to the valve is not on.

- Always turn off the power to this board before removing it from the card holder.

1 MIN-limiting for matching the lowest pressure
2 MAX-limiting for matching the highest pressure
3 Not used
4 Red socket for current diagnostic
5 Black socket for current diagnostic
6 Red LED (A) for: - function indicator control solenoid

- (B unused here)

7 Yellow LED for: - correct voltage supply

8 Red grip strip with reference information for measured values on the diagnostic sockets
9 UP ramp potentiometer
10 Down ramp potentiometer

Connector (Elevation B)

Only potentialfree measuring equipment to be used

11 Reference potential OV supply
13 Input ramp disable
14 Input command voltage 0 to +10 VDC
16 Output +10 V reference
18 Input 24 VDC supply
22 Input external ramp option
25 Output control solenoid
26 Output control solenoid
27 Input external ramp option
31 Reference potential OV set value

General Description

Series PCD00A-400 electronic module for driving proportional pressure control and proportional throttle valves is compact and easy to install with DIN rail mounting and plug-in terminals. The module is designed to drive two coils independent of each other. The digital design allows for programmable parameters such as solenoid drive current, mons, maxi, ramps and setpoints. The module provides flexibility and repeatability from unit to unit. The module parameters are programmed with an RS-232 interface and user friendly software (ProPxD) with default values for standarg valves.

The PCD00A-400 module contains the functions required by typical pressure control and throttle valve applications (series $\mathrm{RE}^{*} \mathrm{~W}, \mathrm{PE}^{*} \mathrm{~W}, \mathrm{DSAE}, \mathrm{VBY}, \mathrm{VMY}$, TDA, and TEA valves).

Features

- Two independent valve drivers.
- Ramps, Setpoints, Mins, Maxs.
- 5 output current selections.
- Programmable parameters.
- RS-232 Interface.

Ordering Information

[^28]Catalog MSG14-2550/US
Technical Information

Electronic Modules

Series PCD00A-400

Specifications

General			
Model	Module package for snap-on mounting on EN 50022 rail	Mounting Position	Any
		Ambient Temperature Range	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Package Material	Polycarbonate		
Inflammability Class	V2 to V0 acc. UL 94	Protection Class	IP 20 acc. DIN 40050
Electrical			
Duty Ratio	100\%	Status Signal	Off - 0 to $0.5 \mathrm{VDC} ;$ On - Us; rated max. 15 mA
Supply Voltage	18 VDC to 30 VDC, ripple < 5\% eff., surge free* (29 VDC to 30 VDC for 24 V coils)	Adjustment Ranges Minimum Maximum Ramp Time Current	0 to 50% 0 to 1000 50 to 100% 0 to 1000 0 to 32.5 s 0 to 32.5 $0.8 / 3.5 / 2.7 / 1.8 / 1.3$ A $0 / 1 / 2 / 3 / 4 / 5$
Switch-on Current Typ.	22A for 0.2 mS		
Current Consumption Max.	5.0A	Interface	RS 232C, DSub 9p. male for null modem cable
Pre-fusing	6.3A medium lag	EMC	EN 50081-2, EN 50082-2
Command Signal	0 to +10 VDC, ripple $<0.01 \%$ eff., surge free, $\mathrm{Ri}=150 \mathrm{~K}$ ohm	Connection	Screw terminals 0.2 to $2.5 \mathrm{~mm}^{2}$, plug-in
Input Signal Resolution	0.025\%	Cable Specification	16 AWG overall braid shield for supply voltage and solenoids 20 AWG overall braid shield for sensor and signal
Differential Input Voltage Max.	30V for terminals 5 and 6 against PE (terminal 8)		
Enable Signal	Off - 0 to 5.0 VDC ; On -8.5 to $30 \mathrm{VDC} ; \mathrm{Ri}=30 \mathrm{~K}$ ohm	Cable Length	50m (164 ft.)
Channel Recall Signal	Off - 0 to 5.0 VDC ; On - 8.5 to $30 \mathrm{VDC} ; \mathrm{Ri}=30 \mathrm{~K}$ ohm		

Block Diagram — Wiring

Signal Flow Diagram

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

ProPxD Interface Program

The new ProPxD software permits comfortable parameter setting for the electronic module series PCD, PWD, PZD and PID.
Via the clearly arranged entry mask the parameters can be noticed and modified. Storage of complete parameter sets to floppy or hard disk is possible as well as printout or record as a text file for further documentation. Stored parameter sets may be loaded anytime and transmitted to the electronic module in the same manner as the basic parameters which are available for all usable valve series. Inside the electronic a nonvolatile memory stores the data with the option for recalling or modification.

Features

- User-friendly editing of all parameters.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR} 95$ upwards.
- Communication between PC and electronic via serial interface RS-232 and null modem cable.
- Simple to use interface program. Download free of charge www.parker.com/euro_hcd \rightarrow Services \rightarrow downloads

General Description

Series ET*104 electronic module is used to control TDA and TEA proportional throttle valves configured with the 'L' solenoid option. For valves configured with the ' M ' solenoid option, refer to driver card PCD00A-400. The module accepts a 0 to 10 volt command signal, and produces a proportionally linear output current used to drive the valve's proportional solenoid. Note that the linearity of the valve itself determines the linearity of the system. Refer to the specific valve data for actual linearity performance. Two ramp adjustments provide control of actuator acceleration and deceleration.

Features

- Processing and amplification of the externally supplied positive set-values into output signals for the control solenoid.
- Can be combined with PZD00A-400 or external programmable control.
- DIP switch from internal ramp generation to external ramp setting.
- MIN/MAX limiters for matching the working range to the full set value range.
- Pulsed low-loss amplifier power stage with supporting constant current control for constant, temperatureindependent, solenoid forces.
- Dither generator with applied frequency to improve static characteristics.
- Diagnosis by means of diagnostic sockets as well as LEDs for indicating working conditions.
Dimensions
Inch equivalents for millimeter dimensions are shown in (**)

For new applications: ET*104: Refer to PCD00A-400

Ordering Information

| ET |
| :--- | :---: | :---: |
| Electronic Module |
| Pressure Valve |

Specifications

Connection	31 Pole Male Connector, DIN 41617
Power Supply	Regulated: $18-26 \mathrm{~V}$ Unregulated: $22-38 \mathrm{~V}$
Power Required	40 VA
Command Signal	0 to +10 VDC
Input Select Voltage	5 to 30 VDC
Reference Outputs	+10 VDC 10 mA
Max. Solenoid Output Current	1.05 A with set value 10 V
Ambient Temp. Range	$0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F}\right),$ Standard Range
Ramps	0 to 5 seconds adjustable
Shielded Cable Connection	Supply connections + valve: 1.5 sq. mm (16 AWG) Command Signals: 0.5 sq. mm (20 AWG)
Fuse	2A medium lag, DIN 41571/5x20 mm
Code Description 104 Amplifier, adjustable MIN/MAX limits, UP/DOWN ramps for valves with 'L' solenoid option	

Block Diagram — Wiring

Operating and Diagnostic Elements (Elevation A)

Notes:

- Turn off the electrical power to this board whenever the hydraulic supply to the valve is not on.
- Always turn off the power to this board before removing it from the card holder.

1 MIN limiter for matching the smallest throttle aperture
2 MAX limiter for matching the largest throttle aperture
3 not used
4 Red socket for current diagnostic
5 Black socket for current diagnostic
6 Red LED (A) for: - function indicator control solenoid - (B not used)

7 Yellow LED for: - correct voltage supply
8 Green grip strip with reference information for measured values
9 UP ramp potentiometer
10 DOWN ramp potentiometer

Only potentialfree measuring equipment to be used

Connector (Elevation B)

Electronic Modules

Technical Information

General Description

Series BD90 servo amplifiers are high performance amplifiers designed to work with Series BD and DY servovalves. The amplifiers are packed with many desirable features that make them extremely versatile performers in motion control systems.

Features

- Voltage or Current Commands - The user has the option of command input ranges of either $\pm 14 \mathrm{VDC}$ or $\pm 28 \mathrm{~mA}$.
- Two Differential Input Feedback Amplifiers - Both inner and outer loops have Proportional-IntegralDerivative gain.
- Built-in Power Supply - The BD90 has its own power supply with inputs rated at either 115 VAC or 230 VAC.
- Dither Circuitry - The user can select either the onboard 60 Hz dither circuit, or input his own external dither frequency.
- Reference Power Supply - A reference suply voltage of $\pm 15 \mathrm{VDC}$ @ 350 mA , and ± 10 VDC @ 50 mA .
- External Logic Shutdown - Allows the user to shut down the output to the valve by applying an external voltage signal.
- Convenient Mounting - The BD90 mounts in a convenient standard "Snap-Trac" mount.
- Plug-in Terminal Strips - This feature makes it unnecessary to remove the wires from the terminal strip.

Ordering Information

BD90 Connector 1000177
Snap-Trac BD90 830007-15
Snap-Trac is included with delivery

Specifications

Power Supply	BD90 -115 VAC or $230 \mathrm{VAC} @ 30 \mathrm{VA}$, $50 / 60 \mathrm{~Hz}$
Command Signal Range	$\pm 14 \mathrm{VDC}, \pm 28 \mathrm{~mA}$
Input Impedance on Command Terminals	50 K ohm minimum

Block Diagram — Wiring

BD90 Servo Amplifier

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

BD90 Servo Amplifier

General Description

Series BD101 is an accessory card designed to solve a variety of common system problems. It is available in both ± 15 VDC and 24 VDC versions.
This card can function as a current driver for the BD servo valves. Maximum current outputs of $\pm 30 \mathrm{~mA}$, $\pm 60 \mathrm{~mA}, \pm 100 \mathrm{~mA}$ and $\pm 150 \mathrm{~mA}$ are jumper configurable.

Closed loop options are switch selectable with integral and proportional control. Feedback scaling, input bias, and gain adjustments are provided. Outputs currents up to $\pm 150 \mathrm{~mA}$ or voltage output of ± 10 VDC are available.

Current command of $\pm 20 \mathrm{~mA}$ can be converted to ± 10 VDC.

Features

- Open loop current driver for up to $\pm 150 \mathrm{~mA}$.
- $\pm 20 \mathrm{~mA}$ input to ± 10 VDC output option.
- Closed loop option with proportional and/or integral control.
- $\pm 10 \mathrm{VDC}$ reference voltages available.
- Available in ± 15 VDC and +24 VDC versions.
- Differential inputs provide better noise immunity.
- Scaling and bias available on input signals.

Specifications

Power Supply Input	$\begin{array}{\|l} \hline \text { BD101-15 } \\ \quad \pm 5 \mathrm{VDC} @ 200 \mathrm{~mA} \\ \text { BD101-24 } \\ 24 \mathrm{VVC} \text { Nominal } \\ (22-28 \mathrm{VDC}) @ 250 \mathrm{~mA} \\ \hline \end{array}$
CMD and FDBK Inputs Voltage	Differential Inputs ± 10 VDC max. 100 K ohm input impedance
Current	$\pm 20 \mathrm{~mA}$ max switch configurable 499 ohm input impedance
Reference Voltages	± 10 VDC @ 10 mA
Current Output	$\pm 30 \mathrm{~mA}, \pm 60 \mathrm{~mA}, \pm 100 \mathrm{~mA}$, or $\pm 150 \mathrm{~mA}$ Fixed up to $\pm 150 \mathrm{~mA}$ Adjustable Icoil Rcoil $\leq 12.5 \mathrm{~V}$
Voltage Output	± 10 VDC @ 10 mA 1000 ohm output impedance
Operating Temperature Range (Ambient)	BD101-15: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
	BD101-24: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ ($\leq 100 \mathrm{~mA}$ load)
	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ ($32^{\circ} \mathrm{F}$ to $131^{\circ} \mathrm{F}$) ($>100 \mathrm{~mA}$ load)
Size	82.6 mm (3.25") wide $\times 127 \mathrm{~mm}(5.00$ ") long x 38.1 mm (1.5^{5}) high
Mounting	Snap-Trac Parker PN 830007-5.25

. WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3 -Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
D01_Cat2550.indd, ddp, 04/19

Ordering Information

BD
Signal
Conditional
Card

Note: Snap-Trac is included with delivery

Block Diagram — Wiring

Dimensions - Inch eqivalents for millimeter dimensions are shown in (**)

General Description

Parker electronic modules PID00A-40* for rail mounting are compact, easy to install and provide time saving wiring by disconnectable terminals. The digital design of the circuit results in good accuracy and optimal adaption for closed loop controls by a comfortable interface program.

Features

The described electronic unit combines all necessary functions for the optimal operation of closed loop controls. The most important features are:

- Extended PID controls.
- Speed control with position feedback.
- Differential input stage with different signal options.
- Output stage with different output options.
- Four-quadrant ramp function.
- Status indicator.

- Digital circuit design.
- Parametering by serial interface RS-232.
- Connection by disconnectable terminals.
- Compatible to the relevant European EMC standards.
- Optional technology function "linearization"
- Simple to use interface program.

Ordering Information

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
D01_Cat2550.indd, ddp, 04/19

Specifications

General		Electrical (cont.)	
Model	Module package for snap-on mounting on EN 50022 rail	Input Signal Resolution	0.025 \%
Package Material	Polycarbonate	Differential Input Voltage Max.	30 V for terminals 5 and 6 against PE (terminal 8)
Inflammability Class	V2...V0 acc. UL 94		
Mounting Position	Any	Enable Signal	$\begin{aligned} & 0 . .2 .5 \mathrm{~V}: \text { OFF / } 5 \ldots . .30 \mathrm{~V}: \mathrm{ON} \\ & \mathrm{Ri}=100 \mathrm{kOhm} \end{aligned}$
Ambient Temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$	Status Signal	0...0.5 V: OFF / Us: ON rated 15 mA maximum
Protection Class	IP 20 acc. DIN 40050	Monitor Signal	+10...0...-10 V, rated 5 mA max., signal resolution 0.4%
Weight	0.16 kg (0.35 lbs.)		
	Electrical	Adjustment Ranges	Minimum: $0 \ldots .50 \%$ Maximum: $50 \ldots . .100 \%$ Ramp: $0 \ldots .32 .5 \mathrm{~s}$ Zero Offset $+100 \% \ldots-100 \%$
Duty Ratio	100\%		
Supply Voltage	$18 . . .30$ VDC, ripple $<5 \%$ eff., surge free		
Current Consumption Max.	100 mA	Interface	RS 232C, DSub 9p. male for null modem cable
Pre-fusing	500 mA	EMC	EN 50081-2, EN 50082-2
Command Signal Options	+10...0...-10 V, ripple <0.01 eff., surge free, $\mathrm{Ri}=100 \mathrm{kOhm}$ +20...0...-20 mA, ripple <0.01 eff., surge free, $\mathrm{Ri}=200 \mathrm{kOhm}$ 4... $12 . . .20 \mathrm{~mA}$, ripple <0.01 eff., surge free, $\mathrm{Ri}=200 \mathrm{kOhm}$ $<3.6 \mathrm{~mA}=$ solenoid output OFF, $<3.8 \mathrm{~mA}=$ solenoid output ON, (acc. NAMUR NE43)	Connection	Screw Terminals $0.2 \ldots . .2 .5 \mathrm{~mm}^{2}$, disconnectable
		Cable Specification	20 AWG overall braid shield
		Cable Length	50 m (164 ft.)
		Options	
		Technology Function	Code 1: Software adjustable transfer function with 10 compensation points for linearization of valve behavior

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

© \rightarrow

Block Diagram — Wiring

Signal Flow Diagram

ProPxD Interface Program

The new ProPxD software permits comfortable parameter setting for the electronic module series PCD, PWD, PZD and PID.
Via the clearly arranged entry mask the parameters can be noticed and modified. Storage of complete parameter sets to floppy or hard disk is possible as well as printout or record as a text file for further documentation. Stored parameter sets may be loaded anytime and transmitted to the electronic module in the same manner as the basic parameters which are available for all usable valve series. Inside the electronic a nonvolatile memory stores the data with the option for recalling or modification.

Features

- User-friendly editing of all parameters.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR} 95$ upwards.
- Communication between PC and electronic via serial interface RS-232 and null modem cable.
- Simple to use interface program. Download free of charge www.parker.com/euro_hcd \rightarrow Services \rightarrow downloads

General Description

Series PZDOOA-40* electronic modules provide options to enhance PWD, PCD driver modules and valves with onboard electronics. The modules are compact and easy to install with DIN rail mounting and plug-in terminals. The digital design allows for programmable parameters such as input signal conditioning, setpoints, ramps, mins, maxs, and command output options. The modules provide flexibility for different applications and repeatability from unit to unit. The module parameters are programmed with an RS-232 interface and user friendly software (ProPxD) with default values for the standard valves.

The PZDOOA-40* module contains the functions required by typical proportional valve applications (series D*FP, D**FH valves, PWD, PCD modules).

Features

- Setpoints, ramp options, mins, maxs.

- Command output options.
- Programmable parameters.
- Reference voltages.
- RS-232 Interface.
- User friendly programming software.
- Plug-in terminals.
- Compliant with European EMC Standards.

Block Diagram - Wiring

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
D01_Cat2550.indd, ddp, 04/19

Electronic Modules

Technical Information
Series PZD00A-40*

Ordering Information

Specifications

General			
Model	Module package for snap-on mounting on EN 50022 rail	Mounting Position	Any
		Ambient Temperature Range	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Package Material	Polycarbonate		
Inflammability Class	V2 to V0 acc. UL 94	Protection Class	IP 20 acc. DIN 40050
Electrical			
Duty Ratio	100\%	Status Signal	Off - 0 to 0.5 VDC; On - Supply Voltage; rated max. 15 mA
Supply Voltage	18 VDC to 30 VDC, ripple $<5 \%$ eff., surge free		
		Output Signal	+10 to 0 to -10 VDC, rated max. 15 mA +20 to 0 to $-20 \mathrm{~mA}, \mathrm{Ro}<500$ ohm 4 to 12 to 20 mA, Ro <500 ohm
Current Consumption Max.	100 mA		
Pre-fusing	500 mA medium lag		
Command Signal	+10 to 0 to -10 VDC, ripple < 0.01 \% eff., surge free, $\mathrm{Ri}=100 \mathrm{~K}$ ohm +20 to 0 to -20 mA, ripple <0.01 \% eff., surge free, $\mathrm{Ri}=200$ Ohm 4 to 12 to 20 mA , ripple < 0.01 \% eff., surge free, $\mathrm{Ri}=200$ Ohm $<3.6 \mathrm{~mA}=$ output signal $0 \mathrm{~V} / 0 \mathrm{~mA} /$ 12 mA acc. to output option $>3.8 \mathrm{~mA}=$ output signal on (acc. NAMUR NE43)	Output Signal Resolution	0.025\%
		Reference output	+10/-10, 2\%, rated max. 15 mA
		Adjustment Ranges Minimum Maximum Cmd Channels Ramp Time Zero Offset	$\begin{array}{\|l} 0 \text { to } 50 \% \\ 50 \text { to } 100 \% \\ +100 \text { to }-100 \% \\ 0 \text { to } 32.5 \mathrm{~s} \\ +100 \text { to }-100 \% \\ \hline \end{array}$
		Interface	RS 232C, DSub 9p. male for null modem cable
Input Signal Resolution	0.025\%	EMC	EN 50081-2, EN 50082-2
Differential Input Voltage Max.	30 VDC for terminals 5 and 6 against PE (terminal 8)	Connection	Screw terminals 0.2 to $2.5 \mathrm{~mm}^{2}$, disconnectable
		Cable Specification	20 AWG overall braid shield
Channel Recall Signal	$\begin{aligned} & \text { Off }-0 \text { to } 2.5 \mathrm{VDC} \\ & \text { On }-5 \text { to } 30 \mathrm{VDC} \mathrm{Ri}=100 \mathrm{~K} \text { ohm } \end{aligned}$	Cable Length	50 m (164 ft.)
Options			
Technology Function	Code 1: Software adjustable transfer function with 10 compensation points for linearization of valve behavior.		

Signal Flow Diagram

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

ProPxD Interface Program

The new ProPxD software permits comfortable parameter setting for the electronic module series PCD, PWD, PZD and PID.
Via the clearly arranged entry mask the parameters can be noticed and modified. Storage of complete parameter sets to floppy or hard disk is possible as well as printout or record as a text file for further documentation. Stored parameter sets may be loaded anytime and transmitted to the electronic module in the same manner as the basic parameters which are available for all usable valve series. Inside the electronic a nonvolatile memory stores the data with the option for recalling or modification.

Features

- User-friendly editing of all parameters.
- Storage and loading of optimized parameter adjustments.
- Executable with all Windows ${ }^{\circledR}$ operating systems from Windows ${ }^{\circledR} 95$ upwards.
- Communication between PC and electronic via serial interface RS-232 and null modem cable.
- Simple to use interface program. Download free of charge www.parker.com/euro_hcd \rightarrow Services \rightarrow downloads

General Description

Series Compax3F is the new member of the servo drive family of Parker Hannifin. It is especially designed for the requirements of electrohydraulic systems and in particular for position and force control of electrohydraulic axis.

Attention:

For application support and customized software, please contact your local Parker representative.

Large Drive Range

- Valves:
- Proportional direction control valves
- Proportional pressure relief and pressure reducing valves
- Flow valves
- Drives:
- Cylinders
- Rotary drives
- Motors

Range of Application

- Closed loop position and force control of linear cylinders and rotary drives
- Switching between position and force control
- Synchronous run with up to 64 axes

Typical Applications

($\left.\in c{ }_{c}\right)_{u s}$

- Feeder axis
- Position and force control of press cylinders in material forming machines
- Roller clearance control in roller presses
- Die casting machines

I WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3 -Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
D01_Cat2550.indd, ddp, 04/19

Project Development, Commissioning and Programming
PC-Tools - Open and Transparent

- Compax3 ServoManager
- Intuitively understandable user interface
- Wizard technology
- Online help
- Oscilloscope function
- Optimized co-ordination of complete mechatronic systems
- Valve and Drive manager
- All technical data of Parker valves, cylinders and drives available
- Additionally support through the Compax3F Hydraulics-Manager by configuration of user defined valves and drives.
Software download, free of charge:
www.compax3.com

Monitoring and Control

Operator Panels

Control equipment for all text and graphics applications in industrial environments, from two-line displays to touch-panels using field busses:

- Profibus DP
- CANopen
- DeviceNET
- Interbus-S

For further information please refer to POP:
"Parker Operator Panels".
Download: www.parker-eme.com/pop.
In addition to drivers for Compax3/Compax3 powerPLmC, drivers for other PLC products can be integrated on request.

Flexible Service and Maintenance

Operating Module

- Backlit plug-in module, text display with two six-teen-character lines
- Simple menu navigation with 4 keys
- Display of status values and
- clear text error messages
- Used for changing parameters and manual operation

Integration with the Office Enviroment

ActiveX Plug-in

- Office and industrial environments are constantly growing closer together.
- The use of ActiveX technology allows simple integration into Office application.

Interface

Field Bus

- Profibus DP
- CANopen (CiADS402)
- DeviceNet
- PowerLink
- EtherCAT
- Address configurable via Dip switch

Connection of External Inputs/Outputs

Parker E/A-System (PIO)

Additional external digital and analog inputs and outputs can be integrated via the CANopen.

International Standards in Programming
Advantages Offered by Integrated Standards

- Programming system
- CoDeSys
- Programming language
- IEC61131-3
- Function modules based on PLCopen

Jerk-limited Set Point Generation, Resulting In:

- Gentle handling of the items being moved
- Increased service life of mechanical components
- Overshoot-free positioning
- Reduced excitation of mechanical resonance frequencies

Control

- 2 control loops for each axis for combined position and force/pressure control

Position Control

- Automatic controller design for position control - User-oriented optimization of parameters
- Feed forward control of speed and acceleration which results in:
- Optimization of the response behaviour
- Minimization of the following error

Force/Pressure Controller

- PID controller with feed forward control of speed

2-Axis Synchronous Run

Hydraulic Specific Functions

- Realization of many different circuit concepts with up to 4 proportional valves possible
- Linearization functions:
- Consideration of the area of differential cylinders
- Inverting of the valve set value
- Compensation of the load pressure (additional pressure sensors necessary)
- Correction of the nonlinear flow characteristic of the valve
- Overlap compensation
- Valve zero point correction
- Valve set value filters
- Valve set value limitation
- All functions for each valve individually available
- Automatic configuration by component selection in the Compax3 ServoManager

Set Up Controller Optimization

- Compax3F HydraulicsManager
- All necessary technical data of Parker valves and drives are available
- additional supported
- Test movement for automatic controller attitude
- Optimization with integrated oscilloscope function
- Automatic pre-setting of the controller for position control possible

Function	Motion control with motion profils. Suitable for position and force/pressure control
Housing / Protection Class	closed metal housing, isolation according to VDE 0160 / IP 20
Supply Voltage [VDC]	21...27VDC, ripple <1VSS
Current Requirements [A]	0,8 for the device, digital outputs 100 mA each
Supported Feedback-Systems	- Analog $0 . .20 \mathrm{~mA}, 4 . .20 \mathrm{~mA}, \pm 10 \mathrm{~V}$ - Start-Stop-Interface - SSI-Interface - EnDat2.1-Interface - 1VSS (max. 400kHz) Interface, 13.5Bit / Distance coding - TTL (RS422) (max. 5MHz), internal post-quadrature resolution
Set Point Generator	- Jerk-limited ramps - Travel data in increments, mm, inches or variable by scale factor - Specification of speed, acceleration, delay and jerk factor - Force/pressure inputs in N, psi, etc. variable by scale factor
Monitoring Functions	- Power/auxiliary supply range - Following error monitoring - Hard- and Software switches
Inputs and Outputs	- 8 control inputs: 24V DC / 10kOhm. - 4 control inputs Active HIGH / short-circuit protected / 24V / 100mA. - 4 analog current input (14Bit). - 2 analog voltage input (14Bit). - 4 analog output (16Bit, current or voltage) switchable in pairs.
RS232 / RS485 (switchable) RS232: RS485 (2 or 4-wire):	- 115200Baud - Word length 8 bits, 1 start bit, 1 stop bit - Hardware handshake XON, XOFF - 9600, 19200, 38400, 57600 or 115200 Baud - Word length 7/8Bit, 1 Start-, 1 Stop bit - Parity (switchable) even/odd
Bus Systems	- Profibus DP V0-V2 (I20), 12Mbit/s, PROFIdrive-Profil Drive technology - CANopen (CiADS402) (I21) - DeviceNet (I22) - PowerLink (I30) - EtherCAT (I31)
CE Compliance	- EMC interference emission/limit values for industrial utilization according to EN61 800-3 first environment (commercial and residential area), class A via integrated mains filter for up to 10 mCable length, otherwise with external mains filter - EMC immunity/limit values for industrial utilization according to EN61 800-3
Insulation Requirements	- Protection class I according to EN 50178 (VDE 0160 part 1) - Contact protection: according to DIN VDE 0106, part 100 - Overvoltage: Voltage class III according to HD 625 (VDE 0110-1) - Degree of contamination 2 according to HD 625 (VDE 0110 part 1) and EN 50178 (VDE 0160 part 1)
Environmental Conditions General environmental condi tions acc. to EN 60 721-3-1 to 3-3 Permissible ambient temperature Tolerated humidity: non condensing Elevation of operating site: <=1000m above sea level for 100% load ratings	- Climate (temperature / humidity / barometric pressure) - Class 3K3 - Operation: 0 to $+45^{\circ} \mathrm{C}$ class 3 K 3 - Storage: -25 to $+70^{\circ} \mathrm{C}$ class 2 K 3 - Transport: -25 to $+70^{\circ} \mathrm{C}$ class 2 K 3 - Operation: <= 85\% class 2K3 - Storage: <= 95\% class 3K3 (relative humidity) - Transport: <= 95\% class 2K3 - Please inquire for greater elevations Protection class IP20 according EN 60529
EMC Directives and Harmonized EC Norms	- EC low voltage directive 73/23/EEC and RL 93/68/EEC: EN 50 178, General industrial safety norm Equipping electric power systems with electronic operating equipment HD 625, general electrical safety. Insulation principles for electrical operating equipment EN 60 204-1, Machinery norm, partly applied - EC-EMC directive 89/336/EEC: EN 61 800-3, EMC norm Product standard for variable speed drives EN 50 081-2 ... 50 082-2, EN 61 000-4-2 ...61 000-4-5
UL Certification	USL according to UL508 (listed) / CNL according to C22.2 No: 142-M1987 (listed) Certified: E-File-No: E198563

	F001 D2	Interface		
Code	Interface	T11	T30	T40
111	Digital inputs/outputs		-	-
112	Digital inputs/outputs	-		
120	Profibus DP V0/V1/V2 (12Mbit/s)	-	-	-
121	CANopen		-	-
122	DeviceNet		-	-
130	PowerLink		-	-
I31	EtherCAT		-	-

Technology Functions

Code	Technology Functions T11
Positioning/pressure	
and force control	
T30	Programmable motion control according to IEC61131
T40	Electronic Cam

Code	Options
M00	Standards
M10	Extension 12 digital I/Os
\& HEDA (motion bus)	
M11	HEDA (motionbus)
M12	Extension 12 digital I/Os

Weight: $\quad 2.0 \mathrm{~kg}(4.4 \mathrm{lbs}$.

Please order connection set ZBH02/04 for Compax 3F separately.
Complete kit with mating plug connectors (X1, X2 and X3) for Compax3 connectors and special shield connecting terminal

Overview Technology Functions

	T11	T30	T40
Set tables for up to 31 motion profiles	x		
Absolute or relative positioning	x	x	x
Force/pressure control	x	x	x
Electronic Gearbox	x	x	x
Dynamic positioning	x	x	x
Hydraulic specific control technology	x	x	x
Reg-related positioning	x	x	x
Programmable according to IEC61131-3		x	x
Programming system DoDeSys		x	x
Up to 6500 instructions		x	x
Recipe table with 288 variables		x	x
PLCopen		x	x
Mark synchronization			x
Cam switching mechanism			x
Cam profiles			x
Coupling and decoupling function			
	x	x	x
Digital I/Os (RS232/485)	O	O	O
Profibus		O	O
CANopen		O	O
DeviceNet	O	O	
Ethernet Powerlink	O		
EtherCAT			

x = Standard
$\mathrm{O}=$ Optional

Compax3F T11

Benefits

- No programming skills necessary
- Set table with various motion
- Full controller range available
- an ideal basis for many applications in high-performance motion automation

Function Range T11

- Set tables for positioning, pressure and force control up to 31 motion profiles:
- Absolute or relative positioning
- Force/pressure control
- speed control
- electronic gearing
- superimposed force and pressure control
- Controller switching between position and force/ pressure control

Extended Function Range

- Absolute force control
- superimposed force and pressure control
- Controller switching between position and force/ pressure control
- 2-axis synchronous

Absolute or Relative Positioning

A motion set defines a complete motion with all settable parameters

1. Target position
2. Travel speed
3. Maximum acceleration
4. Maximum deceleration
5. Maximum jerk

Stop Movement

The Stop set interrupts the current motion set.

Reg-related Positioning

For registration mark-related positioning, 2 motions are defined:

- RegSearch: Search of an external signal, e.g. a registration mark on a product
- RegMove: The external signal interrupts the search movement and the second movement by an offset follows without transition
- Precision of the registration mark detection: $<1 \mu \mathrm{~s}$

Electronic Gearbox:

Motion synchronized to a master axis with any transmission ratio. The position of a master axis can be detected via:

- +/-10V analog input
- Step/direction command Input
- the encoder input or
- HEDA, with Compax3 Master

Dynamic Positioning

A new motion profile can be selected during a positioning sequence - a smooth transition takes place.

Compax3 T30 Motion Control According to PLCopen

General

Due to its high flexibility and efficiency the Compax3 motion control according to PLCopen is for most applications the optimal basis for decentralized motion control.

Positioning with function modules based on PLCopen

- Programmable based on IEC61131-3
- Programming system: CoDeSys
- Up to 5000 instructions
- 500 16-bit variables / 15032 -bit variables
- Recipe table with 288 variables
- 3 16-bit saved variables (power failure protected) / 3

32-bit saved variables (power failure protected)

- PLCopen-function modules:
- Positioning: absolute, relative, additive and continuous
- Machine Zero.
- Stop, energizing the power stage, quit
- Position, device status, reading axis error
- Electronic gearbox (Mc_GearIn)
- IEC61131-3-standard modules:
- Up to 8 timers (TON, TOF, TP)
- Trigger (R_TRIG, F_TRIG)
- Flip-flops (RS, SR)
- Counters (CTU, CTD, CTUD)
- Device-specific function modules:
- C3_Input: reading digital inputs
- C3_Output: writing digital inputs
- C3_ReadArray: access to recipe table
- Inputs/outputs:
- 8 digital inputs (24 V level)
-4 digital outputs (24 V level)
-6 analog inputs (14 bits)
-4 analog outputs (16 bits)
- Optional addition of 12 digital inputs/outputs

PLCopen function blocks

- Absolute positioning
- Relative positioning
- Additive positioning
- Continuous positioning
- Stop
- Machine zero
- Energizing the power output stage
- Reading device status
- Reading axis error
- Acknowledging errors
- Reading the current position
- Electronic gearbox (gearing)

Example of an field bus interface controlled IEC61131-application

- 2 control words are placed on the cyclic channel of the bus.
- The position data records (position, speed, acceleration etc.) are stored in a table (array).
- The desired position data record is selected with Controlword_2.
- The individual bits of Controlword_1 control positioning.
- A return message is sent via a status word on the cyclic channel of the bus.

Example of a bus interface controlled IEC61131 application

Compax3 T40 IEC61131-3 Positioning with Cam Function Modules

General

Compax3 T40 is able to simulate mechanical cams and cam switching mechanisms electronically. The T40 electronic cam was especially optimized for:

- The packaging machine industry
- For the printing industry
- All applications, where a mechanical cam is to be replaced by a flexible, cyclic electronic solution
This helps to solve discontinuous material supply, flying-knive and similar drive applications using distributed drive technology.
Compax3 T40 supports both real and virtual master movements. In addition, the user can switch to other cam profiles or cam segments on the fly.
Programming is carried out in the well-known IEC61131-3 environment.
With the aid of the cam function modules and CamDesigner, cam applications can be implemented very easily.

Function T40

- Technology functions of the T30 version fully integrated and available
- Master position acquisition
- Mark synchronization
- Cam switching mechanism
- Coupling and decoupling function
- Cam profiles
- Cam memory
- Cam creation with CamDesigner

Master Position Acquisition

- Acquisition by incremental encoder
- Acquisition by the HEDA real-time bus

Virtual Master:
A second axis in the IEC program can be used to program a motion profile, which serves as a master for one or several axes.

Mark Synchronization

- Master or slave oriented (simultaneous, cam-independent)
- Highly-precise mark recognition (accuracy <1 $\mu \mathrm{s}$; Touchprobe)

Cam Switching Mechanism

- 36 cams with individual profiles
- 4 fast cams ($125 \mu \mathrm{~s}$ per cam) standard: $500 \mu \mathrm{~s}$
- 32 serial cams, $16 \mathrm{~ms} / \mathrm{cam}$ cycle ($0.5 \mathrm{~ms} / \mathrm{cam}$)
- Delay-time compensated cams: Compax3 can advance the cam to compensate for delays in switching elements.

Coupling and Decoupling Functions

- By means of a set point generator
- By means of a change-over function
- Without overspeeding by coupling over several master cycles
- Virtually free set-up of the coupling and decoupling movement
- Master-guided coupling movement
- Random standstill position

Cam Profiles

- Up to 20 cam segments can be produced by:
- Virtually random cam links (forwards and backwards)
- Freely programmable event-controlled cam branches
- Scalable cam segments and complete cam profiles

Cam Memory

- 10,000 points (Master/Slave) in 24-bit format
- High-precision profile generation:
- Variable point spacing with full backup of the current master and slave coordinates (even if the power fails)
- Linear interpolation between points
- Cam memory for up to 20 curves

Electronic Modules

 Series Compax3F
Connection of High-Level Controllers

Control via Digital Inputs/Outputs Compax3 I11T30 / I11T40 / I12T11

The digital I/Os can be optionally extended by 12 I/Os (M10 and M12 option).

Control via Profibus,
Compax3 I2OT11 / I20T30 / I20T40

Profibus-ratings	
DP-Versions	DPV0 / DPV1
Baud rate $\quad[\mathrm{MBit} / \mathrm{s}]$	up to 12
Profibus ID	C320

Control via CANopen, Compax3 I21T30 / I21T40

CANopen-ratings	
Baud rate $\quad[\mathrm{kBit} / \mathrm{s}]$	$20,50,100,125,250,500,800,1000$
Service-Data-Object	SDO1
Process-Data-Objects	PDO1, .. PDO4

Control via DeviceNet, Compax3 122T30 / I22T40

DeviceNet-ratings	
I / O - data	up to 32 bytes
Baud rate $[\mathrm{kBit} / \mathrm{s}]$	$125 \ldots 500$
Nodes	up to 63 Slaves

Control via Ethernet Powerlink, Compax3 I30T30 / I30T40

Ethernet Powerlink ratings	
Baud rate	100 Mbits (FastEthernet)
Cycle time	$<200 \mu \mathrm{~s}$; to 240 nodes

Control via EtherCAT

Compax3 I30T30 / I30T40

EtherCAT-ratings	
Bau drate	100 Mbits (FastEthernet)
Cycle time	$<200 \mu \mathrm{~s}$; to 240 nodes

Decentralized Control via CANopen, I21T30 /

 I21T40
With External Inputs/Outputs (PIO)

Additional external digital and analog inputs and outputs can be integrated via the CANopen master function. For this purpose we offer the Parker I/O system (PIO):

- CANopen field bus coupler: $650 \mathrm{~mA} / 5 \mathrm{~V}$, $1650 \mathrm{~mA} / 5 \mathrm{~V}$
- Digital input terminals: 2 -, 4-, and 8-channel
- Analog input terminals: 2-channel ($0-10 \mathrm{~V}$), 4-channel (0-20mA)
- Digital output terminals: 2-, 4-, and 8-channel
- Analog output terminals: 2-channel ($0-10 \mathrm{~V}, 0-20 \mathrm{~mA}$, +/-10V)

Electronic Modules

Series Compax3F

Simple, Wizard-guided Configuration and Commissioning Compax3 ServoManager Software Tool C3 ServoManager
Configuration is carried out on a PC using the Compax3 ServoManager.

- Wizard-guided configuration
- Automatic querying of all necessary entries
- Graphically supported selection
- Setup mode
- Moving individual axes
- Predefined profiles
- Convenient operation
- Storage of defined profiles
- Controller pre-setting possible
- Integrated 4-channel oscilloscope
- Signal tracing directly on the PC
- Various modes (single/normal/auto/roll)
- Zoom function
- Export as image or table (for example to Excel)

Software Tool HydraulicsManager

- Simple set up of customer valves, cylinders and drives.
- Technical data of all Parker valves, cylinders and drives available.

C3 HydraulicsManager valve database
ndd, ddp, 04/19

Cam Creation with CamDesigner

Software Tool CamDesigner

- Standardized Nolte cam generating tool with:
- Standard or extended range of functions
- Evaluation of the motion profiles
- Verification of the drive sizing
- Transition laws from VDI directive 2143:
- Selection of motion laws
- The CamDesigner basic version features 15 motion laws (based on the dwell-to-dwell (interpolation method)

Evaluation of the motion profile

Cam generation with the integrated CamEditor

Electronic Modules

Advantages Offered by International Standards in Programming

IEC61131-3 Programming Language

IEC61131-3 is the only company- and product-independent programming language with worldwide support for industrial automation devices.

- IEC61131-3 includes graphical and textual programming languages:
- Instruction list
- Structured text
- Ladder diagram
- Sequential function chart
- Function block diagram

Integrated standards offer:

- A trusted programming environment
- Standardized programming

Integrated standards reduce:

- The overhead of development
- Maintenance costs
- Software upkeep
- Training overhead

Integrated standards increase:

- Productivity
- Software quality
- Concentration on core competence

Examples:

- Program development in IL

- Instruction list (IL)

LD	A
ANDN	B
ST	C

- Ladder diagram

- Structured text
C := A AND NOT B
- Function plan

Function Modules Based on PLCopen

PLCopen is a product and company independent organization that plays a significant role in supporting the IEC61131-3 programming language. Its specific tasks also include defining basic processes relevant to motion. The PLCopen organization consists of both users and manufacturers of automation components.
Parker Hannifin is an active member of the "Motion Control" task force. This is a great advantage for the users of Parker drive technology, since they are constantly able to profit directly from the latest developments in PLCopen.

Professional Development Tool CoDeSys

CoDeSys is a development environment for programming that saves a significant amount of time as applications are created.

- One of the most powerful development environments available, established world-wide
- Universal programming platform for various devices
- Visual elements
- Library management for user-defined applications
- Context-sensitive help wizard
- Data exchange between devices from different manufacturers
- Complete online functionality
- Sophisticated technological features
- Standard function modules deposited
... and all this for no additional cost

Parker is a member of the "CoDeSys Automation Alliance".

Program Development in CFC

Project Management

Saving an entire project (source file) including symbols and comments to make service calls easier, because there is no need for any project data on the device itself

- Archiving projects as ZIP files
- Creating user-specific libraries that can be reused as tested sections of programs
- These libraries can be protected
- Examples include winders, synchronization components etc.
- Various user levels make it possible to lock sections of the program with passwords
- Depending on the task at hand, users can select from among 5 IEC languages plus CFC. These languages can also be mixed

Connection Set ZBH02/04

Complete kit with mating plug connectors (X1, X2 and X3) for Compax3 connectors and special shield connecting terminal

Feedback Cable GBK.....
Connection to the Motor:
Under the designation "REK.. + GBK.." (Feedback cable) we can deliver feedback connecting cables in various lengths to order.

- Prefabricated with plug and cable eye
- The plugs of the Parker motor and feedback cables contain a special surface area screening.
- Cable plans, if you wish to make up your own cables

Terminal Block EAM06/..

For additional wiring of the inputs and outputs:

- Available with or without LED display
- Can be mounted in the control cabinet on a supporting rail
- Connection EAM06/.. via SSK23/..to X11, SSK24/.. to X12

RS232 Cable SSK01 (in various lengths)
Configuration:
Via a PC with the aid of the Compax3 ServoManager. Communication:
Communication with Compax3 either via RS232 or via RS485 in order to read or write into objects.

Profibus plug BUS08/01

- BUS08/01 with 2 cable inputs (1x BUS08/01 incoming, 1x BUS08/01 continuing) and screw terminals, as well as a switch for activating the terminating resistor. Set to ON for first and last bus node terminating resistor activated.

Profibus cable: SSL01/.. not prefabricated

- Special cable in any length for Profibus wiring (colors according to DESINA).

Operating module BDM01/01

For display and diagnosis purposes:

- Can be plugged in during operation
- Power supply via Compax3 servo control
- For displaying and changing values

HEDA Bus

HEDA bus terminal connector (RJ45) BUS07/01:

- For the first and last Compax3 in the HEDA bus.

HEDA cable: SSK28/.. prefabricated in various lengths:

- Cable for HEDA bus wiring from Compax3-to-Compax3 or PC-to-Compax3 powerPLmC.

CANbus plug BUS10/01

- BUS10/01 with 2 cable inputs (1x BUS10/01 incoming, 1x BUS10/01 continuing) and screw terminals, as well as a switch for activating the terminating resistor. Set to ON for first and last bus node terminating resistor activated
CANbus cable SSLO2/.. not prefabricated
- Special cable in any length for CANbus wiring (colors according to DESINA)

External Inputs/Outputs PIO...

For Compax3 21 from technology function T30 onwards via CANopen:

- Integration of additional external input and output modules (digital and analog)

Accessories Ordering Information

Connection set for Compax 3									
for C3F001 D2 F12xxx	ZBH 02/04	Z	B	H	0	2		0	4
Operating module									
Operating module		B	D	M	0	1		0	1
Terminal block									
for I/Os without luminous indicator	for X11, X12	E	A	M	0	6		0	1
for I/Os with luminous indicator	for X12	E	A	M	0	6		0	2
Interface cables and connectors									
PC-Compax3 (RS232)		S	S	K	0	1	 ${ }^{1)}$
on X11/X13 (Transducer)	With flying leads	S	S	K	2	1	1)
on X12 (//O digital)	With flying leads	S	S	K	2	2	 ${ }^{1)}$
on X11(Ref/Analog)	For I/O terminal	S	S	K	2	3	 ${ }^{1)}$
on X12 (//Os digital)	For I/O terminal	S	S	K	2	4	1)
PC - POP (RS232)		S	S	K	2	5	 ${ }^{1)}$
Compax3 - POP (RS485)		S	S	K	2	7	3)
Compax3 HEDA - Compax3 HEDA or PC - C3powerPLmC		S	S	K	2	8	2)
Compax3 X11-Compax3 X11 (Encoder coupling of 2 axes)		S	S	K	2	9	1)
HEDA bus terminal connector (for the 1st and the last Compax3 in the HEDA Bus)		B	U	S	0	7		0	1
Feedback cable for Balluff SSI transducer and start/stop		G	B	K	4	0	1)
Feedback cable for SSI transducer and start/stop	With flying leads	G	B	K	5	3	1)
Profibus cable ${ }^{4)}$	Not prefabricated	S	S	L	0	1	 ${ }^{1)}$
Profibus connector		B	U	S	0	8		0	1
CAN-Bus cable ${ }^{4)}$	Not prefabricated	S	S	L	0	2	1)
CAN-Bus connector		B	U	S	1	0		0	1

${ }^{1)}$ Length code

| Length code | 1 (Example: SSK01/09: Length 25 m) | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Length $[\mathrm{m}]$ | 1.0 | 2.5 | 5.0 | 7.5 | 10.0 | 12.5 | 15 | 20 | 25 | 30 | 50 |
| Code | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 14 |

2) Length code for SSK28

Length code	2 (Example: SSK28/22: Length 3 m)					
Length $[\mathrm{m}]$	0.25	0.5	1.0	3.0	5.0	10.0
Code	20	21	01	22	03	05

${ }^{3}$) Length code for SSK27
Length A: Cable or connection from POP with one Compax3 (POP - 1.Compax3), variable length according to length code ${ }^{11}$
(Example: SSK27/01/01: Length 1.0m)
Length B: Cable or connection from POP with more than one Compax3 (nn > 01) (1.Compax3-2.Compax3-...), length between Compax connectors is fixed to 50 cm , variable length A from POP with first Compax according to length code ${ }^{1)}$
(Example: SSK27/03/01: Length 1.0m)
${ }^{4}$) Colors according to DESINA

Length Code for SSK27

Number of Compax3: nn

Decentralized Input terminals								
PIO 2DI 24V DC 3.0ms	2-Channel Digital-Input terminal		P	1	0	4	0	0
PIO 4DI 24V DC 3.0ms	4-Channel Digital-Input terminal		P	1	\bigcirc	4	0	2
PIO 8DI 24V DC 3.0ms	8-Channel Digital-Input terminal		P	1	0	4	3	0
PIO 2AI DC $\pm 10 \mathrm{~V}$	2-Channel Analog-Input terminal	($\pm 10 \mathrm{~V}$ Differential input)	P	1	0	4	5	6
PIO 4AI 0-10V DC S.E.	4-Channel Analog-Input terminal	(0-10V Signal voltage)	P	1	\bigcirc	4	6	8
PIO 2AI 0-20mA	2-Channel Analog-Input terminal	(0-20mA Differential input)	P	1	0	4	8	0
Decentralized Output terminals								
PIO 2DO 24V DC 0.5A	2-Channel Digital-Output terminal	(Output current 0.5A)	P	1	0	5	0	1
PIO 4DO 24V DC 0.5A	4-Channel Digital-Output terminal	(Output current 0.5A)	P	1	0	5	0	4
PIO 8DO 24V DC 0.5A	8-Channel Digital-Output terminal	(Output current 0.5A)	P	1	0	5	3	0
PIO 2AO 0-10V DC	2-Channel Analog-Output terminal	(0-10V Signal voltage)	P	1	0	5	5	0
PIO 4AO 0-20mA	2-Channel Analog-Output terminal	(0-20mA Signal voltage)	P	1	0	5	5	2
PIO 2AO DC $\pm 10 \mathrm{~V}$	2-Channel Analog-Output terminal	($\pm 10 \mathrm{~V}$ Signal voltage)	P	1	0	5	5	6
CANopen Fieldbus coupler								
CANopen Standard			P	1	0	3	3	7
CANopen ECO			P	1	0	3	4	7

General Description

Series PSD24 power supplies are the compact DIN Rail mount version for easy installation with use of the Digital Modules. This single phase power supply automatically adjusts for either 115 or 230 VAC, 50 or 60 Hz input. The nominal output is a filtered and regulated 24 VDC / 120 Watts 5 amperes. Series PSD power supplies are UL recognized, meet CSA standards and also the CE ms. It is ATEX approved for Class 1, Div 2 Hazardous Locations.
These power supplies provide the power necessary to operate the following Electrohydraulic products:

- D*FP, D*1FP, D*FH, D*FL, D*FX, D*FB and RE* valves
- PWD00, PCD00, PWDXX, PID, PZD and EW, electronics

Operation

Series PSD24 power supplies have capability for parallel operation. Conductor sizes are listed below in the specification. DIN rail design provides easy installation. A green LED and power on logic is provided (DC OK signal). Compact, rugged, and with $>640,000$ hours MTBF make this ideal for idustrial applications.

Ordering Information

Connector - Pinout

Dimensions
Inch equivalents for millimeter dimensions are shown in (**)

[^29]
Specifications

SDN 2.5-24-100P

Input Power Requirements	
Nominal Voltage AC Range DC Range ${ }^{2}$ Frequency	$\begin{aligned} & 115 / 230 \text { VAC auto select } \\ & 85-132 / 176-264 \text { VAC } \\ & 210-375 \text { VDC } \\ & 47-63 \mathrm{~Hz} \end{aligned}$
Nominal Current ${ }^{1}$	2.2 A / 1.0 A
Inrush Current Maximum	typ. < 20 A
Output Power Specifications	
Nominal Voltage Tolerance Ripple ${ }^{3}$	$\begin{aligned} & \hline 24 \mathrm{VDC}(22.5-28.5 \mathrm{VDC} \text { adjustable) } \\ & < \pm 2 \% \text { overall (combination line, load, time and temperature related changes) } \\ & <50 \mathrm{~m} \text { Vpp } \\ & \hline \end{aligned}$
Nominal Current Peak Current ${ }^{4}$	5 A (120 W) 6 A $2 x$ Nominal Current < 2 sec.
General Protection Safety	Protected against continuous short-circuit, overload, open-circuit. Protection class 1 (IEC 536), degree of protection IP20 (IEC 529). Safe low voltage: SELV (acc. EN60950)
Installation	
Fusing Input	Internally fused. External 10 A slow acting fusing for the input is recommended to protect input wiring
Mounting	Simple snap on system for DIN Rail TS35/7.5.
Input Connections	IP20-rated screw terminals; connector size range: 16-10 AWG (1.5-6 mm2) for solid conductors, 16-12 AWG ($0.5-4 \mathrm{~mm} 2$) for flexible conductors
Output Connections	Two connectors per output; Connector size range: 16-10 AWG (1.5-6 mm2) for solid conductors

Notes:

1. Input current ratings are conservatively specified with low input, worst case efficiency and power factor.
2. Losses are heat dissipation in watts at full load, nominal input line.
3. Ripple/noise is stated as typical values when measured with a 20 MHz bandwidth scope and 50 Ohm resistor.
4. All peak current is calculated at 24 V levels.

DIN Rail Mounting

Snap on the DIN Rail

1. Tilt unit slightly backwards
2. Put it onto the DIN Rail

3. Push downwards until stopped
4. Push at the lower front edge to lock
5. Shake the unit slightly to ensure that the retainer has locked

Detachment from DIN Rail

Press button downwards (to unlock) and remove the unit from the DIN Rail.

General Description

Card holders allow easy assembly and wiring of individual electronic driver card models EW, ED, EZ, and ET.

Technical Data

Base-unit	Fastened with screws or DIN rails 35mm
Printed circuit board	Carries the female connector and connection component for the terminal strip
Terminals	Screw terminals per DIN 41617 with wire prot. nominal cross-section AWG11, 5mm pitch
Female connector (per order code)	31 pole to DIN 41617, double row contacts. $15-, ~ 48-, ~ 96 ~ p o l e ~ t o ~ D I N ~ 41612, ~$ 2 or 3 rows of contacts

Ordering Code

K Card Holder

For Driver card models:
EW 101, 102, 104
Ordering Code

For Driver card models:
ED 101, 102, 104
ET 154

ET 101, 102, 104, 105
EZ 150, 154, 155, 305
EZ 595

Weight: $\quad 0.5 \mathrm{~kg}(1.0 \mathrm{lbs})$

Terminal Locations

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

Card Holder for Denison 32 Pin Boards = EX00-S07

Model K

Model KH32F
! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
D01_Cat2550.indd, ddp, 04/19
Description Page
EHC Cable Assemblies E2
Communication Cable Assemblies E2
Connectors E3
Bolt Kits/Subplates E4
EHC Cable Asemblies Wire Color Assignments. E4
Series EX-M05 E5-E6
Terms of Sale and Warranty Limitations. E7
Safety Guide E8-E11

General Description

Supporting accessory products for proportional valves listed in this section include cable assemblies, connectors, bolt kits, and subplates. Valve drivers and power supplies can be found in the electronics section.
EHC cable assemblies are listed for specific valves, by function, and are supplied with an installed connector as specified at one end, pig-tails leads at the other.

Note that all valves are not shipped with a mating connector. Mating connectors are listed by valve application.

Electronic Accessories

Refer to the Electronics section for valve driver electronics, power supplies and accessories.

EHC Cable Assemblies

Valve Application		Connector		Function	Model
		Option	Pins		
$\begin{aligned} & \text { D*FB OBE } \\ & \text { D*1FB OBE } \\ & \text { D*FH } \\ & \text { D*1FH }^{*} \text { *FP } \\ & \text { D**FP } \end{aligned}$	```D*FX ('B' ele. option) D*6FH D*FT D*1FT RE**T RE06*T```	CE compliant, 'MS' style (Preferred)	7	Primary cable assembly	EHC158GE
D*FX ('C' and 'D' ele. option)		'MS' Style	6	Primary cable assembly	EHC158
D*FL		Environmental 'MS' style Environmental 'MS' style CE compliant 'MS' style CE compliant 'MS' style	$\begin{aligned} & 4 \\ & 6 \\ & 4 \\ & 6 \end{aligned}$	Power cable Logic I/O Power cable Logic I/O	EHC154LR EHC156R EHC154LRE EHC156RE
BD, DY		'MS' style	4	Primary cable assembly	EHC154S
D*FP B50 D*1FP B50	D*FB W5 D*1FB W5	CE compliant	12	Primary cable assembly	EHC1512GE

Communication Cable Assemblies

Valve Application		Connector	Function	Model
D*FB OBE D*1FB OBE D*FP D*1FP	D*1FC D*FT 52 Design D*1FT 40 Design RE06*T 26 Design	RS-232 to Mini USB	Parameter change via "ProPXD" software	40982923
D*FB OBE D*1FB OBE D*FT 52 Design	D*1FT 40 Design RE06*T 26 Design	USB to Mini USB	Parameter change via "ProPxD" software	1210846 * * Not for Windows 7 or newer.

! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
E01_Cat2550.indd, ddp, 04/19

Catalog MSG14-2550/US
Technical Information

Proportional Control Valves Accessories

Power Connector — D*FL

Description	Order Number
4 pin	1210292

Primary Connector - D*FT, D*FH, D*FM, D*FX (Ele. Design ‘B'), RE06*T, RE**T, D*FB and D*1FB (OBE), D*FP*0 and D*FP*3

Solenoid Connectors

Description	Variation	Order Number
DIN 43650	Black	692914
DIN 43650	Grey	692915

Primary Connector - TDP025 and TDP050

I/O Connector - D*FL

Description	Order Number
6 pin D*FL	MS3106E-14S-6S
Rubber Boot	801227
6 pin D*FX	
(ele. design A, C \& D)	697561

LVDT Connector - D*1FS

Description	Order Number
M12 / 5 pin	5004109

Primary Connector - D*FP*5, D*1FP*5, D*FB*W5 and D*1FB*W5

Description	Order Number
EN 175201-804 11+PE	5004711

Primary Connector - BD, PH, DY and SE

Interface	Valve	Bolt Kit	Qty	Size	Subplate ${ }^{(1)}$	Port Size	Port Location
NG6 CETOP 3	$\begin{aligned} & \hline \text { D1F }^{*} \\ & \text { RE06 } \end{aligned}$	$\begin{aligned} & \text { BK209 } \\ & \text { BK375 } \\ & \text { BK210 } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 10-24 \times 1.25 "^{\prime \prime} \\ & \mathrm{M} 5 \times 30 \mathrm{~mm} \\ & 10-24 \times 1.875^{\prime \prime} \end{aligned}$	SPD23NS35 SPD23NAS35 SPD26SS35 SPD26SAS35	3/8" NPTF 3/8" NPTF \#12 SAE \#12 SAE	Bottom Side Bottom Side
NG10 CETOP 5	D3F*	$\begin{aligned} & \hline \text { BK98 } \\ & \text { BK385 } \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 1 / 4-20 \times 1.625^{\prime \prime} \\ & \mathrm{M} 6 \times 40 \mathrm{~mm} \end{aligned}$	SPD31D6NS35 SPD31D6NAS35 SPD31D6SS35 SPD31D6SAS35	3/4" NPTF 3/4" NPTF \#12 SAE \#12 SAE	Bottom Side Bottom Side
	D31F*	$\begin{aligned} & \hline \text { BK02 } \\ & \text { BK385 } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 / 4-20 \times 1.5^{\prime \prime} \\ & \mathrm{M} 6 \times 40 \mathrm{~mm} \end{aligned}$	SPD31D6NS35 SPD31D6NAS35 SPD31D6SS35 SPD31D6SAS35	3/4" NPTF 3/4" NPTF \#12 SAE \#12 SAE	Bottom Side Bottom Side
	D36F*	$\begin{aligned} & \hline \text { BK03 } \\ & \text { BK439 } \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 / 4-20 \times 1.5^{\prime \prime} \\ & \mathrm{M} 6 \times 40 \mathrm{~mm} \end{aligned}$	1402190	\#16 SAE	Side
NG16 CETOP 7	D41F*	$\begin{aligned} & \text { BK160 } \\ & \text { BK320 } \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 2 \\ & 4 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 / 8-16 \times 2.5^{\prime \prime} \\ & 1 / 4-20 \times 2.25^{\prime \prime} \\ & \mathrm{M} 10 \times 60 \mathrm{~mm} \\ & \mathrm{M} 6 \times 55 \mathrm{~mm} \\ & \hline \end{aligned}$	DD07SPS012S SPD46B910	$\begin{aligned} & \text { \#12 SAE } \\ & \text { G3/4" } \end{aligned}$	Side Bottom
	D46F*	$\begin{aligned} & \hline \text { BK153 } \\ & \text { BK440 } \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 / 8-16 \times 2.01 \\ & \text { M10 } \times 50 \mathrm{~mm} \end{aligned}$	1402191	\#20 SAE	Side
$\begin{aligned} & \hline \text { NG25 } \\ & \text { CETOP } 8 \end{aligned}$	$\begin{aligned} & \text { D81F* } \\ & \text { D91F* } \end{aligned}$	$\begin{aligned} & \text { BK228 } \\ & \text { BK360 } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 / 2-13 \times 3^{\prime \prime} \\ & \text { M12 } \times 75 \end{aligned}$	SPD66NS35 SPD66NAS35 SPD68NS35 SPD68NAS35 SPD610NS35 SPD610NAS35 SPD610SS35 SPD610SAS35	3/4" NPTF 3/4" NPTF 1" NPTF 1" NPTF 1 1/4" NPTF 1 1/4" NPTF \#20 SAE \#20 SAE	Bottom Side Bottom Side Bottom Side Bottom Side
	D96F*	$\begin{aligned} & \hline \text { BK227 } \\ & \text { BK462 } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 / 2-13 \times 2.5 " \\ & M 12 \times 60 \mathrm{~mm} \end{aligned}$	1402192	\#24 SAE	Side
$\begin{aligned} & \hline \text { NG32 } \\ & \text { CETOP } 10 \\ & \hline \end{aligned}$	D111F*	$\begin{aligned} & \hline \text { BK150 } \\ & \text { BK386 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 / 4-10 \times 3.5^{\prime \prime} \\ & \text { M } 20 \times 90 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SPD1010N35 } \\ & \text { SPD1012N35 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \text { 1/4" NPTF } \\ & 11 / 2^{\prime \prime} \text { NPTF } \\ & \hline \end{aligned}$	Bottom Bottom

(1) Ductile iron; maximum operating pressure: 350 Bar (5075 PSI). Refer to valve specificatons for actual recommended maximums.

Note: All subplates listed use SAE mounting bolt hardware.
EHC Cable Assemblies Wire Color Assignments

	Cable Model - Wire Color					
Pin	154LR	156R	Metal	Plastic	Metal	154S
	154LRE	156RE	158	158G	158GE	
A	Red	Black	Orange	Red	Reck	
B	Green	Red	Blue	Black	Black	Red
C	Black	White	Black	Yellow	Red/Black	Green
D	White	Green	Green/Yellow	Blue	Blue	White
E	-	Orange	Red	Orange	Orange	-
F	-	Blue	White	White	White	-
G	-	-	-	Green	Green	-

Description

Series EX-M05 test unit is suitable for testing and commissioning of all proportional and servo proportional valves with onboard electronics that are offered in this catalog.

For easy on-site service all necessary cables are securely located inside of the rugged case. The test unit provides all command signal sources and measuring ports for concerted and time saving control and diagnosis of the valves. For operation of the new hybrid regenerative valves an additional switchable 24 V output is available.

Features

- Control of valves incorporating integrated electronics and central plug acc. DIN 43563 (6-pin + PE)
- Built-in fuses
- Cable set included
- Locable rugged box

Ordering Information

C ϵ

Specifications

WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
E01_Cat2550.indd, ddp, 04/19

Operator Panel

Front

Rear

Wiring Configuration

Plug EN 175301-803

PARKER-HANNIFIN CORPORATION - HYDRAULIC VALVE DIVISION
 OFFER OF SALE

1. Definitions. As used herein, the following terms have the meanings indicated.

Buyer: means any customer receiving a Quote for Products from Seller.
Goods: means any tangible part, system or component to be supplied by the Seller.
Products: means the Goods, Services and/or Software as described in a Quote provided by the Seller.
Quote: means the offer or proposal made by Seller to Buyer for the supply of Products.
Seller: means Parker-Hannifin Corporation, including all divisions and businesses thereof.
Services: means any services to be supplied by the Seller.
Software: means any software related to the Products, whether embedded or separately downloaded.
Terms: means the terms and conditions of this Offer of Sale or any newer version of the same as published by Seller electronically at www.parker.com/saleterms.
2. Terms. All sales of Products by Seller are contingent upon, and will be governed by, these Terms and, these Terms are incorporated into any Quote provided by Seller to any Buyer. Buyer's order for any Products whether communicated to Seller verbally, in writing, by electronic date interface or other electronic commerce, shall constitute acceptance of these Terms. Seller objects to any contrary or additional terms or conditions of Buyer. Reference in Seller's order acknowledgement to Buyer's purchase order or purchase order number shall in no way constitute an acceptance of any of Buyer's terms of purchase. No modification to these Terms will be binding on Seller unless agreed to in writing and signed by an authorized representative of Seller.
3. Price; Payment. The Products set forth in Seller's Quote are offered for sale at the prices indicated in Seller's Quote. Unless otherwise specifically stated in Seller's Quote, prices are valid for thirty (30) days and do not include any sales, use, or other taxes or duties. Seller reserves the right to modify prices at any time to adjust for any raw material price fluctuations. Unless otherwise specified by Seller, all prices are F.C.A. Seller's facility (INCOTERMS 2010). All sales are contingent upon credit approval and payment for all purchases is due thirty (30) days from the date of invoice (or such date as may be specified in the Quote). Unpaid invoices beyond the specified payment date incur interest at the rate of 1.5% per month or the maximum allowable rate under applicable law.
4. Shipment; Delivery; Title and Risk of Loss. All delivery dates are approximate. Seller is not responsible for damages resulting from any delay. Regardless of the manner of shipment, delivery occurs and title and risk of loss or damage pass to Buyer, upon placement of the Products with the shipment carrier at Seller's facility. Unless otherwise agreed, Seller may exercise its judgment in choosing the carrier and means of delivery. No deferment of shipment at Buyers' request beyond the respective indicated shipping date will be made except on terms that will indemnify, defend and hold Seller harmless against all loss and additional expense. Buyer shall be responsible for any additional shipping charges incurred by Seller due to Buyer's acts or omissions.
5. Warranty. The warranty related to the Products is as follows: (i) Goods are warranted against defects in material or workmanship for a period of eighteen (18) months from the date of delivery; (ii) Services shall be performed in accordance with generally accepted practices and using the degree of care and skill that is ordinarily exercised and customary in the field to which the Services pertain and are warranted for a period of six (6) months from the completion of the Services by Seller; and (iii) Software is only warranted to perform in accordance with applicable specifications provided by Seller to Buyer for ninety (90) days from the date of delivery or, when downloaded by a Buyer or end-user, from the date of the initial download. All prices are based upon the exclusive limited warranty stated above, and upon the following disclaimer: DISCLAIMER OF WARRANTY: THIS WARRANTY IS THE SOLE AND ENTIRE WARRANTY PERTAINING TO PRODUCTS. SELLER DISCLAIMS ALL OTHER WARRANTIES, EXPRESS AND IMPLIED, INCLUDING DESIGN, NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. SELLER DOES NOT WARRANT THAT THE SOFTWARE IS ERROR-FREE OR FAULT-TOLERANT, OR THAT BUYER'S USE THEREOF WILL BE SECURE OR UNINTERRUPTED. BUYER AGREES AND ACKNOWLEDGES THAT UNLESS OTHERWISE AUTHORIZED IN WRITING BY SELLER THE SOFTWARE SHALL NOT BE USED IN CONNECTION WITH HAZARDOUS OR HIGH RISK ACTIVITIES OR ENVIRONMENTS. EXCEPT AS EXPRESSLY STATED HEREIN, ALL PRODUCTS ARE PROVIDED "AS IS".
6. Claims; Commencement of Actions. Buyer shall promptly inspect all Products upon receipt. No claims for shortages will be allowed unless reported to the Seller within ten (10) days of delivery. Buyer shall notify Seller of any alleged breach of warranty within thirty (30) days after the date the non-conformance is or should have been discovered by Buyer. Any claim or action against Seller based upon breach of contract or any other theory, including tort, negligence, or otherwise must be commenced within twelve (12) months from the date of the alleged breach or other alleged event, without regard to the date of discovery. 7. LIMITATION OF LIABILITY. IN THE EVENT OF A BREACH OF WARRANTY, SELLER WILL, AT ITS OPTION, REPAIR OR REPLACE THE NON-CONFORMING PRODUCT, RE-PERFORM THE SERVICES, OR REFUND THE PURCHASE PRICE PAID WITHIN A REASONABLE PERIOD OF TIME. IN NO EVENT IS SELLER LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF, OR AS THE RESULT OF, THE SALE, DELIVERY, NON-DELIVERY, SERVIICING, NON-COMPLETION OF SERVICES, USE, LOSS OF USE OF, OR INABILITY TO USE THE PRODUCTS OR ANY PART THEREOF, LOSS OF DATA, IDENTITY, PRIVACY, OR CONFIDENTIALITY, OR FOR ANY CHARGES OR EXPENSES OF ANY NATURE INCURRED WITHOUT SELLER'S WRITTEN CONSENT, WHETHER BASED IN CONTRACT, TORT OR OTHER LEGAL THEORY. IN NO EVENT SHALL SELLER'S LIABILITY UNDER ANY CLAIM MADE BY BUYER EXCEED THE PURCHASE PRICE PAID FOR THE PRODUCTS.
8. Loss to Buyer's Property. Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer or any other items which are or become Buyer's property, will be considered obsolete and may be destroyed by Seller after two (2) consecutive years have elapsed without Buyer ordering the Products manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.
9. Special Tooling. Special Tooling includes but is not limited to tooling, jigs, fixtures and associated manufacturing equipment acquired or necessary to manufacture Products. A tooling charge may be imposed for any Special Tooling. Such Special Tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in Special Tooling belonging to Seller that is utilized in the manufacture of the Products, even if such Special Tooling has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer. Unless otherwise agreed, Seller has the right to alter, discard or otherwise dispose of any Special Tooling or other property in its sole discretion at any time.
10. Security Interest. To secure payment of all sums due, Seller retains a security interest in all Products delivered to Buyer and, Buyer's acceptance of these Terms is deemed to be a Security Agreement under the Uniform Commercial Code. Buyer authorizes Seller as its attorney to execute and file on Buyer's behalf all documents Seller deems necessary to perfect its security interest.
11. User Responsibility. The Buyer through its own analysis and testing, is solely responsible for making the final selection of the Products and assuring that all performance, endurance, maintenance, safety and warning requirements of the application of the Products are met. The Buyer must analyze all aspects of the application and follow applicable industry standards, specifications, and other technical information provided with the Product. If Seller provides Product options based upon data or specifications provided E01_Cat2550.indd, ddp, 04/19
by the Buyer, the Buyer is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the Products. In the event the Buyer is not the end-user, Buyer will ensure such end-user complies with this paragraph.
12. Use of Products, Indemnity by Buyer. Buyer shall comply with all instructions, guides and specifications provided by Seller with the Products. Unauthorized Uses. If Buyer uses or resells the Products for any uses prohibited in Seller's instructions, guides or specifications, or Buyer otherwise fails to comply with Seller's instructions, guides and specifications, Buyer acknowledges that any such use, resale, or non-compliance is at Buyer's sole risk. Buyer shall indemnify, defend, and hold Seller harmless from any losses, claims, liabilities, damages, lawsuits, judgments and costs (including attorney fees and defense costs), whether for personal injury, property damage, intellectual property infringement or any other claim, brought by or incurred by Buyer, Buyer's employees, or any other person, arising out of: (a) improper selection, application, design, specification or other misuse of Products provided by Seller; (b) any act or omission, negligent or otherwise, of Buyer; (c) Seller's use of patterns, tooling, equipment, plans, drawings, designs or specifications or other information or things furnished by Buyer; (d) damage to the Products from an external cause, repair or attempted repair by anyone other than Seller, failure to follow instructions, guides and specifications provided by Seller, use with goods not provided by Seller, or opening, modifying, deconstructing or tampering with the Products for any reason; or (e) Buyer's failure to comply with these Terms. Seller shall not indemnify Buyer under any circumstance except as otherwise provided in these Terms.
13. Cancellations and Changes. Buyer may not cancel or modify any order for any reason, except with Seller's written consent and upon terms that will indemnify, defend and hold Seller harmless against all direct, incidental and consequential loss or damage. Seller, at any time, may change Product features, specifications, designs and availability.
14. Limitation on Assignment. Buyer may not assign its rights or obligations without the prior written consent of Seller.
15. Force Majeure. Seller does not assume the risk and is not liable for delay or failure to perform any of Seller's obligations by reason of events or circumstances beyond its reasonable control ("Events of Force Majeure"). Events of Force Majeure shall include without limitation: accidents, strikes or labor disputes, acts of any government or government agency, acts of nature, delays or failures in delivery from carriers or suppliers, shortages of materials, or any other cause beyond Seller's reasonable control.
16. Waiver and Severability. Failure to enforce any provision of these Terms will not invalidate that provision; nor will any such failure prejudice Seller's right to enforce that provision in the future. Invalidation of any provision of these Terms by legislation or other rule of law shall not invalidate any other provision herein and, the remaining provisions will remain in full force and effect.
17. Termination. Seller may terminate any agreement governed by or arising from these Terms for any reason and at any time by giving Buyer thirty (30) days prior written notice. Seller may immediately terminate, in writing, if Buyer: (a) breaches any provision of these Terms (b) appoints a trustee, receiver or custodian for all or any part of Buyer's property (c) files a petition for relief in bankruptcy on its own behalf, or one if filed by a third party (d) makes an assignment for the benefit of creditors; or (e) dissolves its business or liquidates all or a majority of its assets.
18. Ownership of Software. Seller retains ownership of all Software supplied to Buyer hereunder. In no event shall Buyer obtain any greater right in and to the Software than a right in the nature of a license limited to the use thereof and subject to compliance with any other terms provided with the Software.
19. Indemnity for Infringement of Intellectual Property Rights. Seller is not liable for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights ("Intellectual Property Rights") except as provided in this Section. Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer based on a third party claim that one or more of the Products sold hereunder infringes the Intellectual Property Rights of a third party in the country of delivery of the Products by the Seller to the Buyer. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of any such claim, and Seller having sole control over the defense of the claim including all negotiations for settlement or compromise. If one or more Products sold hereunder is subject to such a claim, Seller may, at its sole expense and option, procure for Buyer the right to continue using the Products, replace or modify the Products so as to render them non-infringing, or offer to accept return of the Products and refund the purchase price less a reasonable allowance for depreciation. Seller has no obligation or liability for any claim of infringement: (i) arising from information provided by Buyer; or (ii) directed to any Products provided hereunder for which the designs are specified in whole or part by Buyer; or (iii) resulting from the modification, combination or use in a system of any Products provided hereunder. The foregoing provisions of this Section constitute Seller's sole and exclusive liability and Buyer's sole and exclusive remedy for such claims of infringement of Intellectual Property Rights.
20. Governing Law. These Terms and the sale and delivery of all Products are deemed to have taken place in, and shall be governed and construed in accordance with, the laws of the State of Ohio, as applicable to contracts executed and wholly performed therein and without regard to conflicts of laws principles. Buyer irrevocably agrees and consents to the exclusive jurisdiction and venue of the courts of Cuyahoga County, Ohio with respect to any dispute, controversy or claim arising out of or relating to the sale and delivery of the Products.
21. Entire Agreement. These Terms, along with the terms set forth in the main body of any Quote, forms the entire agreement between the Buyer and Seller and constitutes the final, complete and exclusive expression of the terms of sale. In the event of a conflict between any term set forth in the main body of a Quote and these Terms, the terms set forth in the main body of the Quote shall prevail. All prior or contemporaneous written or oral agreements or negotiations with respect to the subject matter shall have no effect. These Terms may not be modified unless in writing and signed by an authorized representative of Seller.
22. Compliance with Laws. Buyer agrees to comply with all applicable laws, regulations, and industry and professional standards, including those of the United States of America, and the country or countries in which Buyer may operate, including without limitation the U.S. Foreign Corrupt Practices Act ("FCPA"), the U.S. Anti-Kickback Act ("Anti-Kickback Act"), U.S. and E.U. export control and sanctions laws ("Export Laws"), the U.S. Food Drug and Cosmetic Act ("FDCA"), and the rules and regulations promulgated by the U.S. Food and Drug Administration ("FDA"), each as currently amended. Buyer agrees to indemnify, defend, and hold harmless Seller from the consequences of any violation of such laws, regulations and standards by Buyer, its employees or agents. Buyer acknowledges that it is familiar with all applicable provisions of the FCPA, the Anti-Kickback Act, Export Laws, the FDCA and the FDA and certifies that Buyer will adhere to the requirements thereof and not take any action that would make Seller violate such requirements. Buyer represents and agrees that Buyer will not make any payment or give anything of value, directly or indirectly, to any governmental official, foreign political party or official thereof, candidate for foreign political office, or commercial entity or person, for any improper purpose, including the purpose of influencing such person to purchase Products or otherwise benefit the business of Seller. Buyer further represents and agrees that it will not receive, use, service, transfer or ship any Product from Seller in a manner or for a purpose that violates Export Laws or would cause Seller to be in violation of Export Laws.

Parker Safety Guide for Selecting and Using Hose, Tubing, Fittings and Related Accessories
Publication No. 4400-B. 1
Revised: October 2015, Rev A

WARNING: Failure or improper selection or improper use of hose, tubing, fittings, assemblies, valves, connectors, conductors or related accessories ("Products") can cause death, personal injury and property damage. Possible consequences of failure or improper selection or improper use of these Products include but are not limited to:

- Fittings thrown off at high speed.
- High velocity fluid discharge.
- Explosion or burning of the conveyed fluid.
- Electrocution from high voltage electric powerlines.
- Contact with suddenly moving or falling objects that
- are controlled by the conveyed fluid.
- Injections by high-pressure fluid discharge.

1.0 GENERAL INSTRUCTIONS

1.1 Scope: This safety guide provides instructions for selecting and using (including assembling, installing, and maintaining) these Products. For convenience, all rubber and/or thermoplastic products commonly called "hose" or "tubing" are called "Hose" in this safety guide. Metallic tube or pipe are called "tube". All assemblies made with Hose are called "Hose Assemblies". All assemblies made with Tube are called "Tube Assemblies".
All products commonly called "fittings", "couplings" or "adapters" are called "Fittings". Valves are fluid system components that control the passage of luid. Related accessories are ancillary devices that enhance or monitor performance including crimping, flaring, flanging, presetting, bending, cutting, deburring, swaging machines, sensors, tags, lockout handles, spring guards and associated tooling. This safety guide is a supplement to and is to be used with the specific Parker publications for the specific Hose, Fittings and Related Accessories that are being considered for use. Parker publications are available at www.parker. com. SAE J1273 (www.sae.org) and ISO 17165-2 (www.ansi.org) also provide recommended practices for hydraulic Hose Assemblies, and should be followed.
1.2 Fail-Safe: Hose, Hose Assemblies, Tube, Tube Assemblies and Fittings can and do fail without warning for many reasons. Design all systems and equipment in a fail-safe mode, so that failure of the Hose, Hose Assembly, Tube, Tube Assembly or Fitting will not endanger persons or property.
1.3 Distribution: Provide a copy of this safety guide to each person responsible for selecting or using Hose, Tube and Fitting products. Do not select or use Parker Hose, Tube or Fittings without thoroughly reading and understanding this safety guide as well as the specific Parker publications for the Products.
1.4 User Responsibility: Due to the wide variety of operating conditions and applications for Hose, Tube and Fittings. Parker does not represent or warrant that any particular Hose, Tube or Fitting is suitable for any specific end use system. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The user, through its own analysis and testing, is solely responsible for: - Making the final selection of the Products.

- Assuring that the user's requirements are met and that the application presents no health or safety hazards.
- Following the safety guide for Related Accessories and being trained to operate Related Accessories.
- Providing all appropriate health and safety warnings on the equipment on which the Products are used.
- Assuring compliance with all applicable government and industry standards.
1.5 Additional Questions: Call the appropriate Parker technical service department if you have any questions or require any additional information.
See the Parker publication for the Products being considered or used, or call 1-800-CPARKER, or go to www.parker.com, for telephone numbers of the appropriate tec hnical service department.

2.0 HOSE, TUBE \& FITTINGS SELECTION INSTRUCTIONS

2.1 Electrical Conductivity: Certain applications require that the Hose be nonconductive to prevent electrical current flow. Other applications require the Hose and the Fittings and the Hose/Fitting interface to be sufficiently conductive to drain off static electricity. Extreme care must be exercised when selecting Hose, Tube and Fittings for these or any other applications in which electrical conductivity or nonconductivity is a factor.
E01_Cat2550.indd, ddp, 04/19

- Dangerously whipping Hose.
- Tube or pipe burst.
- Weld joint fracture.
- Contact with conveyed fluids that may be hot, cold, toxic or
- otherwise injurious.
- Sparking or explosion caused by static electricity buildup or other sources of electricity.
- Sparking or explosion while spraying paint or flammable liquids.
- Injuries resulting from inhalation, ingestion or exposure to fluids. Before selecting or using any of these Products, it is important that you read and follow the instructions below. No product from any division in Parker Fluid Connectors Group is approved for in-flight aerospace applications. For hoses and fittings used in in-flight aerospace applications, please contact Parker Aerospace Group.

The electrical conductivity or nonconductivity of Hose, Tube and Fittings is dependent upon many factors and may be susceptible to change. These factors include but are not limited to the various materials used to make the Hose and the Fittings, Fitting finish (some Fitting finishes are electrically conductive while others are nonconductive), manufacturing methods (including moisture control), how the Fittings contact the Hose, age and amount of deterioration or damage or other changes, moisture content of the Hose at any particular time, and other factors.
The following are considerations for electrically nonconductive and conductive Hose. For other applications consult the individual catalog pages and the appropriate industry or regulatory standards for proper selection.
2.1.1 Electrically Nonconductive Hose: Certain applications require that the Hose be nonconductive to prevent electrical current flow or to maintain electrical isolation. For applications that require Hose to be electrically nonconductive, including but not limited to applications near high voltage electric lines, only special nonconductive Hose can be used. The manufacturer of the equipment in which the nonconductive Hose is to be used must be consulted to be certain that the Hose, Tube and Fittings that are selected are proper for the application. Do not use any Parker Hose or Fittings for any such application requiring nonconductive Hose, including but not limited to applications near high voltage electric lines or dense magnetic fields, unless (i) the application is expressly approved in the Parker technical publication for the product, (ii) the Hose is marked "nonconductive", and (iii) the manufacturer of the equipment on which the Hose is to be used specifically approves the particular Parker Hose, Tube and Fittings for such use.
2.1.2 Electrically Conductive Hose: Parker manufactures special Hose for certain applications that require electrically conductive Hose. Parker manufactures special Hose for conveying paint in airless paint spraying applications. This Hose is labeled "Electrically Conductive Airless Paint Spray Hose" on its layline and packaging. This Hose must be properly connected to the appropriate Parker Fittings and properly grounded in order to dissipate dangerous static charge buildup, which occurs in all airless paint spraying applications. Do not use any other Hose for airless paint spraying, even if electrically conductive. Use of any other Hose or failure to properly connect the Hose can cause a fire or an explosion resulting in death, personal injury, and property damage. All hoses that convey fuels must be grounded.
Parker manufactures a special Hose for certain compressed natural gas ("CNG") applications where static electricity buildup may occur. Parker CNG Hose assemblies comply with the requirements of ANSI/IAS NGV 4.2;CSA 12.52, "Hoses for Natural Gas Vehicles and Dispensing Systems"
(www.ansi.org). This Hose is labeled "Electrically Conductive for CNG Use" on its layline and packaging. This Hose must be properly connected to the appropriate Parker Fittings and properly grounded in order to dissipate dangerous static charge buildup, which occurs in, for example, high velocity CNG dispensing or transfer. Do not use any other Hose for CNG applications where static charge buildup may occur, even if electrically conductive. Use of other Hoses in CNG applications or failure to properly connect or ground this Hose can cause a fire or an explosion resulting in death, personal injury, and property damage. Care must also be taken to protect against CNG permeation through the Hose wall. See section 2.6, Permeation, for more information. Parker CNG Hose is intended for dispenser and vehicle use within the specified temperature range. Parker CNG Hose should not be used in confined spaces or unventilated areas or areas exceeding the specified temperature range.

Parker Safety Guide (Continued)

Final assemblies must be tested for leaks. CNG Hose Assemblies should be tested on a monthly basis for conductivity per ANSI/IAS NGV 4.2; CSA 12.52.

Parker manufactures special Hose for aerospace in-flight applications. Aerospace in-flight applications employing Hose to transmit fuel, lubricating fluids and hydraulic fluids require a special Hose with a conductive inner tube. This Hose for in-flight applications is available only from Parker's Stratoflex Products Division. Do not use any other Parker Hose for in-flight applications, even if electrically conductive. Use of other Hoses for in-flight applications or failure to properly connect or ground this Hose can cause a fire or an explosion resulting in death, personal injury and property damage. These Hose assemblies for in-flight applications must meet all applicable aerospace industry, aircraft engine and aircraft requirements .
2.2 Pressure: Hose, Tube and Fitting selection must be made so that the published maximum working pressure of the Hose, Tube and Fittings are equal to or greater than the maximum system pressure. The maximum working pressure of a Hose, or Tube Assembly is the lower of the respective published maximum working pressures of the Hose, Tube and the Fittings used. Surge pressures or peak transient pressures in the system must be below the published maximum working pressure for the Hose, Tube and Fitting. Surge pressures and peak pressures can usually only be determined by sensitive electrical instrumentation that measures and indicates pressures at millisecond intervals. Mechanical pressure gauges indicate only average pressures and cannot be used to determine surge pressures or peak transient pressures. Published burst pressure ratings for Hose is for manufacturing test purposes only and is no indication that the Product can be used in applications at the burst pressure or otherwise above the published maximum recommended working pressure.
2.3 Suction: Hoses used for suction applications must be selected to insure that the Hose will withstand the vacuum and pressure of the system. Improperly selected Hose may collapse in suction application.
2.4 Temperature: Be certain that fluid and ambient temperatures, both steady and transient, do not exceed the limitations of the Hose, Tube, Fitting and Seals. Temperatures below and above the recommended limit can degrade Hose, Tube, Fittings and Seals to a point where a failure may occur and release fluid. Tube and Fittings performances are normally degraded at elevated temperature. Material compatibility can also change at temperatures outside of the rated range. Properly insulate and protect the Hose Assembly when routing near hot objects (e.g. manifolds). Do not use any Hose in any application where failure of the Hose could result in the conveyed fluids (or vapors or mist from the conveyed fluids) contacting any open flame, molten metal, or other potential fire ignition source that could cause burning or explosion of the conveyed fluids or vapors.
2.5 Fluid Compatibility: Hose, and Tube Assembly selection must assure compatibility of the Hose tube, cover, reinforcement, Tube, Plating and Seals with the fluid media used. See the fluid compatibility chart in the Parker publication for the product being considered or used. This information is offered only as a guide. Actual service life can only be determined by the end user by testing under all extreme conditions and other analysis.
Hose, and Tube that is chemically compatible with a particular fluid must be assembled using Fittings and adapters containing likewise compatible seals. Flange or flare processes can change Tube material properties that may not be compatible with certain requirements such as NACE
2.6 Permeation: Permeation (that is, seepage through the Hose or Seal) will occur from inside the Hose or Fitting to outside when Hose or Fitting is used with gases, liquid and gas fuels, and refrigerants (including but not limited to such materials as helium, diesel fuel, gasoline, natural gas, or LPG). This permeation may result in high concentrations of vapors which are potentially flammable, explosive, or toxic, and in loss of fluid. Dangerous explosions, fires, and other hazards can result when using the wrong Hose for such applications. The system designer must take into account the fact that this permeation will take place and must not use Hose or Fitting if this permeation could be hazardous. The system designer must take into account all legal, government, insurance, or any other special regulations which govern the use of fuels and refrigerants. Never use a Hose or Fitting even though the fluid compatibility is acceptable without considering the potential hazardous effects that can result from permeation through the Hose or Tube Assembly. Permeation of moisture from outside the Hose or Fitting to inside the

Hose or Fitting will also occur in Hose or Tube assemblies, regardless of internal pressure. If this moisture permeation would have detrimental effects (particularly, but not limited to refrigeration and air conditioning systems), incorporation of sufficient drying capacity in the system or other appropriate system safeguards should be selected and used. The sudden pressure release of highly pressurized gas could also result in Explosive Decompression failure of permeated Seals and Hoses.
2.7 Size: Transmission of power by means of pressurized fluid varies with pressure and rate of flow. The size of the components must be adequate to keep pressure losses to a minimum and avoid damage due to heat generation or excessive fluid velocity.
2.8 Routing: Attention must be given to optimum routing to minimize inherent problems (kinking or flow restriction due to Hose collapse, twisting of the Hose, proximity to hot objects or heat sources). For additional routing recommendations see SAE J1273 and ISO 17165-2. Hose Assemblies have a finite life and should be installed in a manner that allows for ease of inspection and future replacement. Hose because of its relative short life, should not be used in residential and commercial buildings inside of inaccessible walls or floors, unless specifically allowed in the product literature. Always review all product literature for proper installation and routing instructions.
2.9 Environment: Care must be taken to insure that the Hose, Tube and Fittings are either compatible with or protected from the environment (that is, surrounding conditions) to which they are exposed. Environmental conditions including but not limited to ultraviolet radiation, sunlight, heat, ozone, moisture, water, salt water, chemicals and air pollutants can cause degradation and premature failure.
2.10 Mechanical Loads: External forces can significantly reduce Hose, Tube and Fitting life or cause failure. Mechanical loads which must be considered include excessive flexing, twist, kinking, tensile or side loads, bend radius, and vibration. Use of swivel type Fittings or adapters may be required to insure no twist is put into the Hose. Use of proper Hose or Tube clamps may also be required to reduce external mechanical loads. Unusual applications may require special testing prior to Hose selection.
2.11 Physical Damage: Care must be taken to protect Hose from wear, snagging, kinking, bending smaller that minimum bend radius and cutting, any of which can cause premature Hose failure. Any Hose that has been kinked or bent to a radius smaller than the minimum bend radius, and any Hose that has been cut or is cracked or is otherwise damaged should be removed and discarded. Fittings with damages such as scratches on sealing surfaces and deformation should be replaced.
2.12 Proper End Fitting: See instructions 3.2 through 3.5. These recommendations may be substantiated by testing to industry standards such as SAE J517 for hydraulic applications, or MIL-A-5070, AS1339, or AS3517 for Hoses from Parker's Stratoflex Products Division for aerospace applications.
2.13 Length: When determining the proper Hose or Tube length of an assembly, be aware of Hose length change due to pressure, Tube length change due to thermal expansion or contraction, and Hose or Tube and machine tolerances and movement must be considered. When routing short hose assemblies, it is recommended that the minimum free hose length is always used. Consult the hose manufacturer for their minimum free hose length recommendations. Hose assemblies should be installed in such a way that any motion or flexing occurs within the same plane.
2.14 Specifications and Standards: When selecting Hose, Tube and Fittings, government, industry, and Parker specifications and recommendations must be reviewed and followed as applicable.
2.15 Hose Cleanliness: Hose and Tube components may vary in cleanliness levels. Care must be taken to insure that the Hose and Tube Assembly selected has an adequate level of cleanliness for the application.
2.16 Fire Resistant Fluids: Some fire resistant fluids that are to be conveyed by Hose or Tube require use of the same type of Hose or Tube as used with petroleum base fluids. Some such fluids require a special Hose, Tube, Fitting and Seal, while a few fluids will not work with any Hose at all. See instructions 2.5 and 1.5. The wrong Hose, Tube, Fitting or Seal may fail after a very short service. In addition, all liquids but pure water may burn fiercely under certain conditions, and even pure water leakage may be hazardous.
2.17 Radiant Heat: Hose and Seals can be heated to destruction without contact by such nearby items as hot manifolds or molten metal. The

Parker Safety Guide (Continued)

same heat source may then initiate a fire. This can occur despite the presence of cool air around the Hose or Seal. Performance of Tube and Fitting subjected to the heat could be degraded.
2.18 Welding or Brazing: When using a torch or arc welder in close proximity to hydraulic lines, the hydraulic lines should be removed or shielded with appropriate fire resistant materials. Flame or weld spatter could burn through the Hose or Seal and possibly ignite escaping fluid resulting in a catastrophic failure. Heating of plated parts, including Hose Fittings and adapters, above $450^{\circ} \mathrm{F}\left(232^{\circ} \mathrm{C}\right)$ such as during welding, brazing or soldering may emit deadly gases. Any elastomer seal on fittings shall be removed prior to welding or brazing, any metallic surfaces shall be protected after brazing or welding when necessary. Welding and brazing filler material shall be compatible with the Tube and Fitting that are joined.
2.19 Atomic Radiation: Atomic radiation affects all materials used in Hose and Tube assemblies. Since the long-term effects may be unknown, do not expose Hose or Tube assemblies to atomic radiation. Nuclear applications may require special Tube and Fittings.
2.20 Aerospace Applications: The only Hose, Tube and Fittings that may be used for in-flight aerospace applications are those available from Parker's Stratoflex Products Division. Do not use any other Hose or Fittings for in-flight applications. Do not use any Hose or Fittings from Parker's Stratoflex Products Division with any other Hose or Fittings, unless expressly approved in writing by the engineering manager or chief engineer of Stratoflex Products Division and verified by the user's own testing and inspection to aerospace industry standards.
2.21 Unlocking Couplings: Ball locking couplings or other Fittings with quick disconnect ability can unintentionally disconnect if they are dragged over obstructions, or if the sleeve or other disconnect member, is bumped or moved enough to cause disconnect. Threaded Fittings should be considered where there is a potential for accidental uncoupling.

3.0 HOSE AND FITTINGS ASSEMBLY AND INSTALLATION INSTRUCTIONS

3.1 Component Inspection: Prior to assembly, a careful examination of the Hose and Fittings must be performed. All components must be checked for correct style, size, catalog number, and length. The Hose must be examined for cleanliness, obstructions, blisters, cover looseness, kinks, cracks,cuts or any other visible defects. Inspect the Fitting and sealing surfaces for burrs, nicks, corrosion or other imperfections. Do NOT use any component that displays any signs of nonconformance.
3.2 Hose and Fitting Assembly: Do not assemble a Parker Fitting on a Parker Hose that is not specifically listed by Parker for that Fitting, unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division. Do not assemble a Parker Fitting on another manufacturer's Hose or a Parker Hose on another manufacturer's Fitting unless (i) the engineering manager or chief engineer of the appropriate Parker division approves the Assembly in writing or that combination is expressly approved in the appropriate Parker literature for the specific Parker product, and (ii) the user verifies the Assembly and the application through analysis and testing. For Parker Hose that does not specify a Parker Fitting, the user is solely responsible for the selection of the proper Fitting and Hose Assembly procedures. See instruction 1.4.
To prevent the possibility of problems such as leakage at the Fitting or system contamination, it is important to completely remove all debris from the cutting operation before installation of the Fittings. The Parker published instructions must be followed for assembling the Fittings on the Hose. These instructions are provided in the Parker Fitting catalog for the specific Parker Fitting being used, or by calling 1-800-CPARKER, or at www. parker.com.
3.3 Related Accessories: Do not crimp or swage any Parker Hose or Fitting with anything but the listed swage or crimp machine and dies in accordance with Parker published instructions. Do not crimp or swage another manufacturer's Fitting with a Parker crimp or swage die unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division.
3.4 Parts: Do not use any Parker Fitting part (including but not limited to socket, shell, nipple, or insert) except with the correct Parker mating parts, in accordance with Parker published instructions, unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division.
3.5 Field Attachable/Permanent: Do not reuse any field attachable Hose Fitting that has blown or pulled off a Hose. Do not reuse a Parker permanent Hose Fitting (crimped or swaged) or any part thereof. Complete Hose Assemblies may only be reused after proper inspection under section 4.0. Do not assemble Fittings to any previously used hydraulic Hose that was in service, for use in a fluid power application.
3.6 Pre-Installation Inspection: Prior to installation, a careful examination of the Hose Assembly must be performed. Inspect the Hose Assembly for any damage or defects. DO NOT use any Hose Assembly that displays any signs of nonconformance.
3.7 Minimum Bend Radius: Installation of a Hose at less than the minimum listed bend radius may significantly reduce the Hose life. Particular attention must be given to preclude sharp bending at the Hose to Fitting juncture. Any bending during installation at less than the minimum bend radius must be avoided. If any Hose is kinked during installation, the Hose must be discarded.
3.8 Twist Angle and Orientation: Hose Assembly installation must be such that relative motion of machine components does not produce twisting. 3.9 Securement: In many applications, it may be necessary to restrain, protect, or guide the Hose to protect it from damage by unnecessary flexing, pressure surges, and contact with other mechanical components. Care must be taken to insure such restraints do not introduce additional stress or wear points.
3.10 Proper Connection of Ports: Proper physical installation of the Hose Assembly requires a correctly installed port connection insuring that no twist or torque is transferred to the Hose when the Fittings are being tightened or otherwise during use.
3.11 External Damage: Proper installation is not complete without insuring that tensile loads, side loads, kinking, flattening, potential abrasion, thread damage or damage to sealing surfaces are corrected or eliminated. See instruction 2.10.
3.12 System Checkout: All air entrapment must be eliminated and the system pressurized to the maximum system pressure (at or below the Hose maximum working pressure) and checked for proper function and freedom from leaks. Personnel must stay out of potential hazardous areas while testing and using.
3.13 Routing: The Hose Assembly should be routed in such a manner so if a failure does occur, the escaping media will not cause personal injury or property damage. In addition, if fluid media comes in contact with hot surfaces, open flame or sparks, a fire or explosion may occur. See section 2.4.
3.14 Ground Fault Equipment Protection Devices (GFEPDs): WARNING! Fire and Shock Hazard. To minimize the danger of fire if the heating cable of a Multitube bundle is damaged or improperly installed, use a Ground Fault Equipment Protection Device. Electrical fault currents may be insufficient to trip a conventional circuit breaker.
For ground fault protection, the IEEE 515: (www.ansi.org) standard for heating cables recommends the use of GFEPDs with a nominal 30 milliampere trip level for "piping systems in classified areas, those areas requiring a high degree of maintenance, or which may be exposed to physical abuse or corrosive atmospheres".

4.0 TUBE AND FITTINGS ASSEMBLY AND INSTALLATION INSTRUCTIONS

4.1 Component Inspection: Prior to assembly, a careful examination of the Tube and Fittings must be performed. All components must be checked for correct style, size, material, seal, and length. Inspect the Fitting and sealing surfaces for burrs, nicks, corrosion, missing seal or other imperfections. Do NOT use any component that displays any signs of nonconformance.
4.2 Tube and Fitting Assembly: Do not assemble a Parker Fitting with a Tube that is not specifically listed by Parker for that Fitting, unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division. The Tube must meet the requirements specified to the Fitting. The Parker published instructions must be followed for assembling the Fittings to a Tube. These instructions are provided in the Parker Fitting catalog for the specific Parker Fitting being used, or by calling 1-800-CPARKER, or at www.parker.com.
4.3 Related Accessories: Do not preset or flange Parker Fitting components using another manufacturer's equipment or procedures unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division. Tube, Fitting component and tool-

Parker Safety Guide (Continued)

ing must be check for correct style, size and material. Operation and maintenance of Related Accessories must be in accordance with the operation manual for the designated Accessory.
4.4 Securement: In many applications, it may be necessary to restrain, protect, or guide the Tube to protect it from damage by unnecessary flexing, pressure surges, vibration, and contact with other mechanical components. Care must be taken to insure such restraints do not introduce additional stress or wear points.
4.5 Proper Connection of Ports: Proper physical installation of the Tube Assembly requires a correctly installed port connection insuring that no torque is transferred to the Tube when the Fittings are being tightened or otherwise during use.
4.6 External Damage: Proper installation is not complete without insuring that tensile loads, side loads, flattening, potential abrasion, thread damage or damage to sealing surfaces are corrected or eliminated. See instruction 2.10.
4.7 System Checkout: All air entrapment must be eliminated and the system pressurized to the maximum system pressure (at or below the Tube Assembly maximum working pressure) and checked for proper function and freedom from leaks. Personnel must stay out of potential hazardous areas while testing and using.
4.8 Routing: The Tube Assembly should be routed in such a manner so if a failure does occur, the escaping media will not cause personal injury or property damage. In addition, if fluid media comes in contact with hot surfaces, open flame or sparks, a fire or explosion may occur. See section 2.4.

5.0 HOSE AND FITTING MAINTENANCE AND REPLACEMENT INSRUCTIONS

5.1 Even with proper selection and installation, Hose life may be significantly reduced without a continuing maintenance program. The severity of the application, risk potential from a possible Hose failure, and experience with any Hose failures in the application or in similar applications should determine the frequency of the inspection and the replacement for the Products so that Products are replaced before any failure occurs. Certain products require maintenance and inspection per industry requirements. Failure to adhere to these requirements may lead to premature failure. A maintenance program must be established and followed by the user and, at minimum, must include instructions 5.2 through 5.7
5.2 Visual Inspection Hose/Fitting: Any of the following conditions require immediate shut down and replacement of the Hose Assembly: - Fitting slippage on Hose;

- Damaged, cracked, cut or abraded cover (any reinforcement exposed);
- Hard, stiff, heat cracked, or charred Hose;
- Cracked, damaged, or badly corroded Fittings;
- Leaks at Fitting or in Hose;
- Kinked, crushed, flattened or twisted Hose; and
- Blistered, soft, degraded, or loose cover.
5.3 Visual Inspection All Other: The following items must be tightened, repaired, corrected or replaced as required:
- Leaking port conditions;
- Excess dirt buildup;/
- Worn clamps, guards or shields; and
- System fluid level, fluid type, and any air entrapment.
5.4 Functional Test: Operate the system at maximum operating pressure and check for possible malfunctions and leaks. Personnel must avoid potential hazardous areas while testing and using the system. See section 2.2.
5.5 Replacement Intervals: Hose assemblies and elastomeric seals used on Hose Fittings and adapters will eventually age, harden, wear and deteriorate under thermal cycling and compression set. Hose Assemblies and elastomeric seals should be inspected and replaced at specific replacement intervals, based on previous service life, government or industry recommendations, or when failures could result in unacceptable downtime, damage, or injury risk. See section 1.2. Hose and Fittings may be subjected to internal mechanical and/or chemical wear from the conveying fluid and may fail without warning. The user must determine the product life under such circumstances by testing. Also see section 2.5.
5.6 Hose Inspection and Failure: Hydraulic power is accomplished by utilizing high pressure fluids to transfer energy and do work. Hoses, Fittings and Hose Assemblies all contribute to this by transmitting fluids at high pressures. Fluids under pressure can be dangerous and potentially lethal and, therefore, extreme caution must be exercised when working with fluids under pressure and handling the Hoses transporting the fluids. From time to time, Hose Assemblies will fail if they are not replaced at proper time intervals. Usually these failures are the result of some form of misapplication, abuse, wear or failure to perform proper maintenance. When Hoses fail, generally the high pressure fluids inside escape in a stream which may or may not be visible to the user. Under no circumstances should the user attempt to locate the leak by "feeling" with their hands or any other part of their body. High pressure fluids can and will penetrate the skin and cause severe tissue damage and possibly loss of limb. Even seemingly minor hydraulic fluid injection injuries must be treated immediately by a physician with knowledge of the tissue damaging properties of hydraulic fluid.
If a Hose failure occurs, immediately shut down the equipment and leave the area until pressure has been completely released from the Hose Assembly. Simply shutting down the hydraulic pump may or may not eliminate the pressure in the Hose Assembly. Many times check valves, etc., are employed in a system and can cause pressure to remain in a Hose Assembly even when pumps or equipment are not operating. Tiny holes in the Hose, commonly known as pinholes, can eject small, dangerously powerful but hard to see streams of hydraulic fluid. It may take several minutes or even hours for the pressure to be relieved so that the Hose Assembly may be examined safely.
Once the pressure has been reduced to zero, the Hose Assembly may be taken off the equipment and examined. It must always be replaced if a failure has occurred. Never attempt to patch or repair a Hose Assembly that has failed. Consult the nearest Parker distributor or the appropriate Parker division for Hose Assembly replacement information. .
Never touch or examine a failed Hose Assembly unless it is obvious that the Hose no longer contains fluid under pressure. The high pressure fluid is extremely dangerous and can cause serious and potentially fatal injury. 5.7 Elastomeric seals: Elastomeric seals will eventually age, harden, wear and deteriorate under thermal cycling and compression set. Elastomeric seals should be inspected and replaced.
5.8 Refrigerant gases: Special care should be taken when working with refrigeration systems. Sudden escape of refrigerant gases can cause blindness if the escaping gases contact the eye and can cause freezing or other severe injuries if it contacts any other portion of the body.
5.9 Compressed natural gas (CNG): Parker CNG Hose Assemblies should be tested after installation and before use, and at least on a monthly basis per instructions provided on the Hose Assembly tag. The recommended procedure is to pressurize the Hose and check for leaks and to visually inspect the Hose for damage and to perform an electrical resistance test.

Caution: Matches, candles, open flame or other sources of ignition shall not be used for Hose inspection. Leak check solutions should be rinsed off after use.

6.0 HOSE STORAGE

6.1 Age Control: Hose and Hose Assemblies must be stored in a manner that facilitates age control and first-in and first-out usage based on manufacturing date of the Hose and Hose Assemblies. Unless otherwise specified by the manufacturer or defined by local laws and regulations:
6.1.1 The shelf life of rubber hose in bulk form or hose made from two or more materials is 28 quarters (7 years) from the date of manufacture, with an extension of 12 quarters (3 years), if stored in accordance with ISO 2230;
6.1.2 The shelf life of thermoplastic and polytetrafluoroethylene hose is considered to be unlimited;
6.1.3 Hose assemblies that pass visual inspection and proof test shall not be stored for longer than 2 years.
6.1.4 Storage: Stored Hose and Hose Assemblies must not be subjected to damage that could reduce their expected service life and must be placed in a cool, dark and dry area with the ends capped. Stored Hose and Hose Assemblies must not be exposed to temperature extremes, ozone, oils, corrosive liquids or fumes, solvents, high humidity, rodents, insects, ultraviolet light, electromagnetic fields or radioactive materials.

[^0]: A01_Cat2500.indd, ddp, 04/19

[^1]: \. WARNING: This product can expose you to chemicals including Lead, Nickel Metalicic) or 1,3 -Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 A01_Cat2500.indd, ddp, 04/19

[^2]: ${ }^{3)}$ Not available with spool type B31 und B32.
 ${ }^{4)}$ Not available with regenerative or hybrid function.

[^3]: \. WARNING: This product can expose you to chemicals including Lead, Nickel Metalic), or 1,3 -Butadiene which are known to the State of Califoria to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 A01_Cat2500.indd, ddp, 04/19

[^4]: © go to www.P65Warnings.ca.gov.
 A01_Cat2500.indd, ddp, 04/19

[^5]: A01 Cat2500.indd, ddp, 04/19

[^6]: (1)

 WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 A01 Cat2500.indd, ddp, 04/19

[^7]: 1) For applications with $\mathrm{pT}>35 \operatorname{Bar}(508 \mathrm{PSI})$ the Y -port has to be connected and the plug in the Y -port has to be removed.
 ${ }^{\text {2) }}$ Flow rate for different Δp per control edge: $Q_{x}=Q_{\text {Nom. }} \cdot \sqrt{\frac{\Delta p_{x}}{\Delta p_{\text {Nom. }}}} \quad \begin{aligned} & \text { 3) } \\ & \text { Measured with load } 100 \text { Bar (1450 PSI) } \\ & \text { pressure drop/two control edges. }\end{aligned}$
[^8]: \. WARNING: This product can expose you to chemicals including Lead, Nickel (Metalic), or 1,3 -Butadiene which are known to the State of Califomia to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 A01_Cat2500.indd, ddp, 04/19

[^9]: ${ }^{1)}$ Do not connect with supply voltage zero.

[^10]: 1) Do not connect with supply voltage zero.
 ${ }^{2)}$ The ProfiBUS plug-in connections are internal connected in pairs (1 and 2, 3 and 4, ...).
[^11]: cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 A01_Cat2500.indd, ddp, 04/19

[^12]: 1) Closed when supplied
[^13]: 1. WARNING: This product can expose you to chemical including Lead, Nickel (Metalic), or 1,3 -Butadiene which are known to the State of Califomia to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 B01_Cat2550.indd, ddp, 04/19
[^14]: I WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3 -Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 B01_Cat2550.indd, ddp, 04/19

[^15]: ${ }^{1)}$ Single solenoid always $0 \ldots+/-10 \mathrm{~V}$ respectively $4 \ldots 20 \mathrm{~mA}$.
 ${ }^{2}$) Factory set $\pm 10 \mathrm{~V}$ on delivery.

[^16]: 1) Measured at 350 Bar (5075 PSI) primary pressure pB .
[^17]: (1)

 WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 B01_Cat2550.indd, ddp, 04/19

[^18]: ${ }^{1)}$ Measured at $350 \mathrm{Bar}(5075 \mathrm{PSI})$ primary pressure pB .

[^19]: * Closed when supplied.

 B01_Cat2550.indd, ddp, 04/19

[^20]: * Closed when supplied

 B01_Cat2550.indd, ddp, 04/19

[^21]: \triangle
 WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 B01_Cat2550.indd, ddp, 04/19

[^22]: A
 ! WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 B01_Cat2550.indd, ddp, 04/19

[^23]: ©
 WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3 -Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 C01_Cat2550.indd, ddp, 04/19

[^24]: C01_Cat2550.indd, ddp, 04/19

[^25]: C01 Cat2550.indd, ddp, 04/19

[^26]: C01_Cat2550.indd, ddp, 04/19

[^27]: WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 D01_Cat2550.indd, ddp, 04/19

[^28]: © WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3 -Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 D01_Cat2550.indd, dap, 04/19

[^29]: 1. WARNING: This product can expose you to chemicals including Lead, Nickel (Metallic), or 1,3-Butadiene which are known to the State of California to cause cancer, and Lead or 1,3-Butadiene which is known to the State of California to cause birth defects and other reproductive harm. For more information go to www.P65Warnings.ca.gov.
 D01_Cat2550.indd, ddp, 04/19
